共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract The quasi mode theory of macroscopic quantization in quantum optics and cavity QED developed by Dalton, Barnett and Knight is generalized. This generalization allows for cases in which two or more quasi permittivities, along with their associated mode functions, are needed to describe the classical optics device. It brings problems such as reflection and refraction at a dielectric boundary, the linear coupler, and the coupling of two optical cavities within the scope of the theory. For the most part, the results that are obtained here are simple generalizations of those obtained in previous work. However the coupling constants, which are of great importance in applications of the theory, are shown to contain significant additional terms which cannot be ‘guessed’ from the simpler forms. The expressions for the coupling constants suggest that the critical factor in determining the strength of coupling between a pair of quasi modes is their degree of spatial overlap. In an accompanying paper a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary is given as an illustration of the generalized theory. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes. 相似文献
2.
Abstract A macroscopic, canonical quantization of the EM field and radiating atom system in quantum optics and cavity QED involving classical, linear optical devices, based on expanding the vector potential in terms of quasi mode functions is presented. The quasi mode functions approximate the true mode functions for the device, and are obtained by solving the Helmholtz equation for an idealized spatially dependent electric permittivity function describing the device. The Hamiltonian for the EM field and radiating atom system is obtained in multipolar form and the quantum EM field is found to be equivalent to a set of quantum harmonic oscillators, one oscillator per quasi mode. However, unlike true mode theory where the quantum harmonic oscillators are uncoupled, in the quasi mode theory they are coupled and photon exchange processes can occur. Explicit expressions for the coupling constants are obtained. The interaction energy between the radiative atoms and the quantum EM field depends on the amplitudes of the quasi mode functions at the positions of the radiating atoms, similar to that for the true mode approach. The simpler forms for the quasi mode functions enable the atom-field interaction energy to be written in a form in which the atoms are only coupled to certain types of modes—for example cavity quasi modes, which are large inside the optical cavity. In such cases the escape of energy from excited atoms in the cavity can be pictured in quasi mode theory as a two step process—the atom de-excites and creates a photon in a cavity quasi mode, the photon in the cavity quasi mode is then lost and appears as a photon in an external quasi mode. In this process the first step occurs via the atom-cavity quasi mode interaction, the second through coupling between cavity and external quasi modes. This may be contrasted with the true mode approach, where the excited atom loses its energy and the photon is created in one of the true modes. As all true modes have non-zero amplitudes outside as well as inside the cavity, the escape of energy from excited atoms in the cavity is seen as a one step process. An application of the quasi mode theory to the quantum theory of the beam splitter is outlined. The unitary operator used to describe this device is a scattering operator, relating initial and long time values of annihilation, creation operators for pairs of incident and reflected modes, interpreted here as quasi modes. 相似文献
3.
Abstract Macroscopic canonical quantization of the EM field and radiative atom systems occurring in quantum optics experiments involving linear classical optics devices can be carried out via expansion of the vector potential either in terms of true mode functions for the optical device or in terms of approximate or quasi mode functions. The relationship between the true mode and quasi mode annihilation, creation operators is determined and shown to involve a Bogolubov transformation. Analytic properties are also examined and it is found that the annihilation, creation operators times the square root of the angular frequency are analytic functions of the variables specifying the modes. 相似文献
4.
Abstract In the present and the accompanying paper a justification of the standard model of cavity quantum electrodynamics is given in terms of a quasi-mode theory of macroscopic canonical quantization. The coupling of the cavity quasi-mode to external quasi-modes is treated for the representative case of the three-dimensional Fabry-Perot cavity. The general form of the travelling and trapped mode functions for this cavity are derived in this paper and the mode-mode coupling constants are calculated in the accompanying paper. The slow dependence of the coupling constants with the mode frequency difference demonstrates that the conditions for Markovian damping of the cavity quasimode are satisfied. As also discussed in the accompanying paper, the interaction of radiative atoms with cavity quasi-modes is associated with reversible energy exchanges between atom and cavity and represented by Rabi coupling constants. The interaction of radiative atoms located within the cavity with sideways travelling external quasi-modes involves slowly varying coupling constants and is associated with irreversible spontaneous emission dampling. The basic processes represented in the standard cavity quantum electrodynamics model and the associated coupling constant and decay rates thereby follow from the quasi-mode theory. 相似文献
5.
Abstract Specific forms of the travelling and trapped vector mode functions for a three-dimensional Fabry-Perot cavity are developed from the general results of the preceding paper, with parameters describing the output cavity mirror chosen for a typical high Q cavity case. Cavity and external quasi-mode functions associated with the quasi-mode theory of macroscopic canonical quantization are then obtained via an idealized choice of output mirror parameters. The coupling constants describing photon exchange processes between the single cavity quasi-mode associated with each Fabry-Perot resonance and various external quasi-modes are calculated, and their slow dependence on the external quasi-mode frequency shows that the conditions for irreversible Markovian damping of the cavity quasi-mode are satisfied. For radiative atoms placed in the cavity the coupling constants for energy exchange processes with sideways travelling external quasi-modes also vary slowely, so that Markovian spontaneous emission damping occurs for the radiative atoms. However, their coupling with the isolated cavity quasi-modes is associated with reversible photon exchanges as represented via one photon Rabi frequencies. The standard model in cavity quantum electrodynamics, in which the basic processes are described by a cavity damping rate, a radiative atom spontaneous decay rate and an atom-cavity mode coupling constant has now been justified in terms of the quasi-mode theory of macroscopic canonical quantization. 相似文献
6.
In this paper, the reflection and refraction problem of a plane wave moving in perfect fluid incident on a viscous fluid-saturated poroelastic solid is investigated. Attention is focus on the effect of squirt flow on the reflection and refraction coefficients predicted by BISQ model. The variations of these coefficients with the characteristic squirt flow length have been shown graphically. The results are also compared with those based on Biot theory without considering the squirt flow effects. The results indicate that the effect of the squirt flow is noticeable in the reflection and refraction phenomenon. 相似文献
7.
Chremmos ID Efremidis NK 《Journal of the Optical Society of America. A, Optics, image science, and vision》2012,29(6):861-868
Reflection and refraction of a finite-power Airy beam at the interface between two dielectric media are investigated analytically and numerically. The formulation takes into account the paraxial nature of the optical beams to derive convenient field evolution equations in coordinate frames moving along Snell's refraction and reflection axes. Through numerical simulations, the self-accelerating dynamics of the Airy-like refracted and reflected beams are observed. Of special interest are the cases of critical incidence at Brewster and total-internal-reflection (TIR) angles. In the former case, we find that the reflected beam achieves self-healing, despite the severe suppression of a part of its spectrum, while, in the latter case, the beam remains nearly unaffected except for the Goos-H?nchen shift. The self-accelerating quality persists even if the beam is trapped by multiple TIRs inside a dielectric film. The grazing incidence of an Airy beam at the interface between two media with close refractive indices is also investigated, revealing that the interface can act as a filter depending on the beam scale and tilt. We finally consider reverse refraction and perfect imaging of an Airy beam into a left-handed medium. 相似文献
8.
J J Stamnes G S Sithambaranathan 《Journal of the Optical Society of America. A, Optics, image science, and vision》2001,18(12):3119-3129
Exact solutions are obtained for the reflected and transmitted fields resulting when an arbitrary electromagnetic field is incident on a plane interface separating an isotropic medium and a biaxially anisotropic medium in which one of the principal axes is along the interface normal. From our exact solutions for the reflected fields resulting when a plane TE or TM wave is incident on the plane interface, it can be inferred that the reflected field contains both a TE and a TM component. This gives a change in polarization that can be utilized to determine the properties of the biaxial medium. The time-harmonic solution for the reflected field is in the form of two quadruple integrals, one of which is a superposition of plane waves polarized perpendicular to the plane of incidence and the other a superposition of plane waves polarized parallel to the plane of incidence. The time-harmonic solution for the transmitted field is also in the form of two quadruple integrals. Each of these is a superposition of extraordinary plane waves with displacement vectors that are perpendicular to the direction of phase propagation. 相似文献
9.
We report the formulation of an ABCD matrix for reflection and refraction of Gaussian light beams at the surface of a parabola of revolution that separate media of different refractive indices based on optical phase matching. The equations for the spot sizes and wave-front radii of the beams are also obtained by using theABCD matrix. With these matrices, we can more conveniently design and evaluate some special optical systems, including these kinds of elements. 相似文献
10.
Reflection at an interface between two materials can be modulated by means of varying the optical properties at the interface. We have studied this modulation of the reflected light with an aim to develop a flashing retroreflector for roadside conspicuity applications. Reflectance modulation has previously been studied under the conditions of total internal reflection (TIR), where a light-absorbing material placed in the associated evanescent wave region can be used to attenuate the intensity of the reflected light. If instead the light rays strike the interface at an angle that is slightly smaller than the critical angle required for TIR, they instead undergo a substantial, but partial, reflection. We have demonstrated that an analogous attenuation effect to the TIR situation is observed, even though there is no evanescent wave present under these circumstances. We have studied this behavior and have developed a model to describe the motion of the absorbing material and the related interference effects that occur. 相似文献
11.
Total internal reflection fluorescence and electrocapillary measurements are employed to provide complementary potential-dependent information about the mechanical and photophysical properties of the interface between two immiscible electrolyte solutions, 1,2-dichloroethane-H2O. Adsorption of the zwitterionic amphiphile, di-N-butylaminonaphthylethenylpyridiniumpropylsulfonate (I) produces an interface with mechanical (interfacial tension) and charge transport properties qualitatively like the unmodified interface. Addition of dilauroylphosphatidylcholine (DLPC) to the organic phase produces an interface dominated by DLPC adsorption and drastically alters the potential dependence of the interfacial tension, gamma, the interfacial excess populations, GammaI, the charge transport, and the fluorescence response from I. This result is explained in terms of a potential-dependent protonation of the DLPC at the interface, which causes it to desorb, and a competition for interfacial sites between DLPC and protonated and unprotonated dye I. Protonation of DLPC results in a rise in gamma, which is correlated with an increase in transport of the organic-phase anion tetraphenylborate, TPB-, and an increase in interfacially excited fluorescence from I. Both results are explained by a model in which the mechanical properties of the interface, as determined by the interfacial DLPC population, direct the ability of other species to transfer across TPB- or adsorb to I the interface. 相似文献
12.
Ciattoni A Cincotti G Palma C 《Journal of the Optical Society of America. A, Optics, image science, and vision》2002,19(7):1422-1431
Angular spectra of reflected and transmitted fields, induced by an arbitrary electromagnetic beam passing through the planar interface between a homogeneous medium and a uniaxially anisotropic medium, are derived and related to the incident medium. By using these formulas, we obtain the expressions for paraxial and slightly nonparaxial fields. The reflected paraxial field is related to the incident one by means of Fresnel relations; the transmitted paraxial field is the superposition of an ordinary and an extraordinary beam, multiplied by the Fresnel coefficient. We find that the nonparaxial corrections, owing to the medium discontinuity, are larger than their free-propagation counterparts and that they are very simply related to the paraxial solutions of the incident beam. The case of two homogeneous media with different refractive indices is also discussed. The general expressions obtained are applied to the case of a nonparaxial Gaussian beam. 相似文献
13.
In this work, dynamic crack growth along a ductile-brittle interface under anti-plane strain conditions is studied. The ductile solid is taken to obey the J
2 flow theory of plasticity with linear isotropic strain hardening, while the substrate is assumed to exhibit linear elastic behavior. Firstly, the asymptotic near-tip stress and velocity fields are derived. These fields are assumed to be variable-separable with a power singularity in the radial coordinate centered at the crack tip. The effects of crack speed, strain hardening of the ductile phase and mismatch in elastic moduli of the two phases on the singularity exponent and the angular functions are studied. Secondly, full-field finite element analyses of the problem under small-scale yielding conditions are performed. The validity of the asymptotic fields and their range of dominance are determined by comparing them with the results of the full-field finite element analyses. Finally, theoretical predictions are made of the variations of the dynamic fracture toughness with crack velocity. The influence of the bi-material parameters on the above variation is investigated. 相似文献
14.
E. H. Brandt 《Journal of Low Temperature Physics》1976,24(3-4):427-442
The explicit free energy functional derived from Gor'kov's theory in a previous paper is shown to reduce, in special cases, to the free energies of the Meissner state, the mixed state, the nonlocal theory, and of the Ginzburg-Landau theory. For superconductors with small magnetization the free energy for arbitrary structure of the flux line lattice is given, for the first time, for the entire temperature range. For isotropic materials the triangular lattice turns out to be the stable one. The shear modulusc
66of the triangular flux line lattice nearH
c2is obtained for arbitrary temperature. 相似文献
15.
Abandoning the traditional assumption that the cracked-plate is infinite, the general solution to the stress intensity factor of an eccentric crack at the interface between two dissimilar layers in a finite rectangular sheet under an arbitrary anti-plane shear stress is found by use of the Fourier transform and Fourier series in this paper. It is easily verified that the stress intensity factor of this problem is independent of material constants of the cracked-plate bonded or welded by two different layers. We may also prove that all results of an eccentric crack or central crack at the interface between two layers in a strip are the special cases of the general solution in this study. 相似文献
16.
Bambino TM Breitschaft AM Barbosa VC Guimarães LG 《Journal of the Optical Society of America. A, Optics, image science, and vision》2003,20(3):489-498
This work deals with some aspects of the resonant scattering of electromagnetic waves by a metallic sphere covered by a dielectric layer, in the weak-absorption approximation. We carry out a geometrical optics treatment of the scattering and develop semiclassical formulas to determine the positions and widths of the system resonances. In addition, we show that the mean lifetime of broad resonances is strongly dependent on the polarization of the incident light. 相似文献
17.
AbstractThe time evolution of entanglement between two quantum dots (QDs) trapped inside a cavity driven by a coherent quantized field is studied. In the presence of dissipation, entanglement shows many interesting features such as sudden death and revival, and finite steady state value after sudden death. We also investigate dependence of entanglement on dot variables and its relation to bistability. It is found that entanglement vanishes when the cavity field intensity approaches the upper branch of the bistability curve. When the cavity is driven by a modulated field in the presence of dissipation, it can periodically generate entanglement, which is much larger than the maximum value attained in the steady-state for this system but the dots are never fully entangled. 相似文献
18.
Alexander Dymnikov Ragnar Hellborg 《Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment》1993,330(3):343-362
A general relativistic theory of the motion of a charged-particle beam motion along a curved optical axis, including the gravitational field, is of great significance in the design of optimal beam control systems. In a first paper, a new matrix approach was presented. In this second paper the expansion of the most general equations of motion and electromagnetic field equations in the Taylor series in powers of the derivation from the reference particle is presented. The nonlinear equations in phase space are reformulated as linear equations in phase moment space. A compact, conservative, recursive method of integrating the equations of motion is proposed. In some cases it is possible to optimize the control system by choosing a definite symmetry. This symmetry is considered in the paper. 相似文献
19.
20.
Abstract We show that every Mueller matrix, that is a real 4 × 4 matrix M which transforms Stokes vectors into Stokes vectors, may be factored as M = L 2 KL 1 where L 1 and L 2 are orthochronous proper Lorentz matrices and K is a canonical Mueller matrix having only two different forms, namely a diagonal form for type-I Mueller matrices and a non-diagonal form (with only one non-zero off-diagonal element) for type-II Mueller matrices. Using the general forms of Mueller matrices so derived, we then obtain the necessary and sufficient conditions for a Mueller matrix M to be Jones derived. These conditions for Jones derivability, unlike the Cloude conditions which are expressed in terms of the eigenvalues of the Hermitian coherency matrix T associated with M, characterize a Jones-derived matrix M through the G eigenvalues and G eigenvectors of the real symmetric N matrix N = [Mtilde]GM associated with M. Appending the passivity conditions for a Mueller matrix onto these Jones-derivability conditions, we then arrive at an algebraic identification of the physically important class of passive Jones-derived Mueller matrices. 相似文献