首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Compressive properties of a new hybrid material, fabricated through filling of an aluminum foam with a thermoplastic polymer, are investigated. Static (0.01 s−1) and dynamic (100 s−1) compression testing has been carried out to study the behavior of the hybrid material in comparison with its parent foam and polymer materials. Considering the behavior of metal foams, the point on a compressive stress–strain curve corresponding to the minimum cushion factor is defined as the “densification” point. The analysis of the stress–strain curves provides insight into the load carrying and energy absorption characteristics of the hybrid material. At both strain rates, the hybrid is found to carry higher stresses and absorb more energy at “densification” than the foam or polymer.  相似文献   

2.
This article reviews studies undertaken on diamond cutting tools, with particular regard to the characteristics and performance of diamond/metal interfaces. The affinity of carbon to metals, as well as the wettability of diamond by molten metals, and the advantage of using coated diamonds under certain cutting conditions, are described. The choice of the appropriate metallic matrix in the field of both impregnated and brazed diamond tools is discussed in terms of the diamond/alloy interface, mechanical properties of the segment, diamond wear speed, and desired cutting performance. The effect of several principal elements and elements added in minor amounts to the metallic matrix is critically evaluated. Relevant open questions, related to the optimization of cutting tools performance, are outlined, with special attention directed toward the need for advanced fundamental studies on the functional link between work of adhesion and work of fracture.  相似文献   

3.
The leakage–current in planar nanojunctions, usually employed to realize molecular field-effect devices, is investigated. Resonances are observed on p-doped substrates when the voltage drop between drain and gate electrodes is around 1.1 V. These resonances are related to resonant tunneling via impurity atoms and are otherwise not observed on n-type substrates.  相似文献   

4.
《Composites Part A》1999,30(4):405-409
A biomimetic process was developed to prepare apatite–metal and apatite–polymer composites. A variety of metals and organic polymers incorporated surface functional groups such as Si–OH, Ti–OH or Ta–OH to induce formation of a biologically active bonelike apatite by chemical treatment or physical adsorption. Subsequent immersion in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma or 1.5 SBF led to the formation of a dense and uniform bonelike apatite layer on the surface. Apatite–metal and apatite–polymer composites prepared in this way are believed to be very useful as artificial bone substitutes.  相似文献   

5.
Graphene’s unique properties, such as strong plasmonic response and electrostatic doping, enable control over the properties of light in an active way. In this paper, we propose a graphene–metal hybrid metamaterial, which exhibits tunable wideband unidirectional light transmission. The hybrid metamaterial consists of a complementary split-ring graphene and a metallic grating. Unidirectional optical transmission with a wide bandwidth of 14.8% of the central frequency at 29.3?THz and a large tuning range of 6.6?THz is found to be achievable in simulations. The light reflection and graphene absorption are shown to be the major factors limiting the efficiency of unidirectional transmission. A large electron scattering time of graphene is beneficial for improving the transmission efficiency. The graphene–metal hybrid metamaterial enables active control over the propagation of light, which could be of interest for infrared isolation, polarization transformation, etc.  相似文献   

6.
Abstract

In this paper, we investigated a plasmonic demultiplexer structure based on Metal–Insulator–Metal (MIM) waveguides and circular ring resonators. In order to achieve the structure of demultiplexer, two improved ring resonators have been used, which input and outputs MIM waveguides coupled by the ring resonators. To improve the transmission efficiency, a reflector was introduced at the right end of the input and output waveguides. By substituting the ring core with dielectric, the possibility of tuning the resonance wavelength of the proposed structure is illustrated, and the effect of various parameters such as radius and refractive index in transmission efficiency is studied in detail. This is useful for the design of integrated circuits in which it is not possible to extend the dimension of the ring resonator to attain a longer resonance wavelength. Transmission efficiency and quality factor of the single ring are 84% and 110, respectively. The simulation results using finite difference time domain method shows that in the proposed demultiplexer, which is composed of two rings with different core refractive indexes, the average power efficiency, bandwidth for each output channel, and the mean value of crosstalk are estimated 80%, 17 nm, and ?26.95 dB, respectively. It is revealed that the significant features of the device are high transmission efficiency, low crosstalk, high-quality factor, and tunability for desired wavelengths. Therefore, the proposed structure has the potential to be applied in plasmonic integrated circuits.  相似文献   

7.
Bilayer ZnO/MgO dielectrics for metal–insulator–metal (MIM) capacitor application were successfully deposited using simple chemical technique which is sol–gel spin coating method with different annealing temperatures. Important criteria in determining good dielectric layer have been investigated which include structural, electrical and dielectric properties. Cubic-like grain was observed for films annealed at 400 and 425 °C which enhance the carrier density and polarization that resulted in high k value produced. Bilayer film annealed at 475 °C improved in small surface roughness (17.629 nm), minimum leakage current density (~10?8 A cm?2) and high resistivity (3.14 × 105 Ω cm). Dielectric constant, k was varied with frequency and k value was found to be 5.09 at 10 kHz. The results obtained in this study indicated that film annealed at temperature of 475 °C is suitable to be used as dielectrics for MIM capacitor application.  相似文献   

8.
A Ti-20V-20Y deformation processed metal–metal composite was deformed axisymmetrically by extrusion and swaging to a true strain of 5.9. Tensile strength, ductility, Y phase thickness and spacing, and preferred crystallographic orientation were examined at several levels of true strain as the deformation progressed. The Ti-V metastable BCC solid solution matrix developed a (110) fiber texture. The Y second phase developed a fiber texture that constrained the Y phase to deform in plane strain. Relatively high tensile ductility was observed at all levels of deformation processing strain.  相似文献   

9.
《Composites Part A》1999,30(4):399-403
Molten aluminum reduces and penetrates silicate ceramics to produce a metal–ceramic composite which yields an Al2O3 skeleton infiltrated with a solidified Al–Si alloy. Penetration experiments have been used to study the influence of p(O2), temperature and substrate composition on penetration kinetics and composite microstructure. The limiting kinetic step for Al penetration is the chemical reaction between Al and the ceramic. For dense substrates the maximum reaction rates are observed between 1000–1200°C and are independent of p(O2). For porous substrates it is necessary to reach a critical temperature or p(O2), before infiltration starts. Increasing the Si concentration in the molten Al results in the reduction of the reaction rates.  相似文献   

10.
We present electrodynamic characteristics of a layered multiferroic structure of metal–dielectric–ferrite–dielectric–ferroelectric–dielectric–metal type calculated by the finite elements method. Properties of transverse modes of hybrid waves (dispersion characteristics, electric field distribution at different frequencies, and damping rate) as functions of the distance between the ferroelectric layer and the metal screen are analyzed for the first time.  相似文献   

11.
A metal–metal bonding technique is described that uses nanoparticles composed of silver and copper. Colloid solutions of nanoparticles with an Ag content of 0–100?mol% were prepared by simultaneous reduction of Ag+ and Cu2+ using hydrazine with polyvinylpyrrolidone and citric acid as stabilisers. The nanoparticles ranged in size from 34 to 149?nm depending on the Ag content. Copper discs were strongly bonded at 400°C for 5?min under 1.2?MPa pressure in hydrogen gas; the maximum shear strength was as high as 23.9?MPa. The dependence of shear strength on the Ag content was explained by a mismatch between the d-spacings of Cu metal and Ag metal.  相似文献   

12.
The research works of graphene-reinforced metal matrix composites will be summarised in this paper. Comparatively, much less research works have been undertaken in this field. Graphene has been thought to be an ideal reinforcement material for composites due to its unique two-dimensional structure and outstanding physical and mechanical properties. It is expected to yield structural materials with high specific strength or functional materials with exciting thermal and electrical characteristics. This paper will introduce all kinds of graphene-reinforced metal matrix composites that have been studied. The microstructure and mechanical properties, processing techniques, graphene dispersion, strengthening mechanisms, interfacial reactions between graphene and the metal matrix and future research works in this field will be discussed.  相似文献   

13.
14.
Machining of the composites made of matrix and reinforcement is always difficult for manufacturing industries due to their unusual properties. Among various existing traditional and non-traditional machining processes, erosion-based machining process i.e., Electrical Discharge Grinding (EDG) and the abrasion-based process i.e., Diamond Grinding (DG) have been shown their potential to machine such difficult-to-machine materials. The aims of the present study are to analyze the performances of the erosion–abrasion-based compound wheel during machining of the hybrid–metal matrix composite made of Aluminum–Silicon Carbide–Boron Carbide (Al/SiC/B4C) by the stir casting method. The performances of the compound wheel have been tested on the EDM machine in the face grinding mode. The role of pulse current, pulse on-time, pulse off-time, wheel RPM, and abrasive grit number have been analyzed on the material removal rate (MRR) and average surface roughness (Ra). The experimental results showed that the machining with compound wheel gives higher MRR with better surface finish as compared to the uniform wheel. It has also been observed that MRR and Ra are highly affected by the pulse current, pulse on-time, and wheel RPM.  相似文献   

15.
This paper addresses the materials and processes for printed wiring board compatible embedded capacitor using ceramic, polymer and metal. The Ca[(Li1/3Nb2/3)0.8Ti0.2]O3?δ (CLNT)–epoxy–silver, three-phase composites were prepared by two step mixing and thermosetting technique. The dielectric properties of the three-phase composites were investigated in terms of volume fraction of silver, temperature and frequency. The dielectric properties of epoxy–CLNT composites were compared with theoretical predictions. The relative permittivity of the three-phase composites increased with silver loading. Addition of 0.28 volume fraction of silver increases the relative permittivity of epoxy–CLNT composites from 8 to 142 at 1 MHz. This composite is flexible and can be fabricated into various shapes with low processing temperature.  相似文献   

16.
Abstract

During the development of new processing routes for Nb3Sn superconductor, factors influencing the workability of two-phase metallic composites have been investigated. The ease with which such composites can be fabricated depends strongly on the relative hardnesses of the phases. Production of a regular, uniform filamentary structure is promoted by low hardness ratios in the initial composite.

MST/547  相似文献   

17.
Metal surfaces in contact with water, surfactants and biopolymers experience attractive polarization owing to induced charges. This fundamental physical interaction complements stronger epitaxial and covalent surface interactions and remains difficult to measure experimentally. We present a first step to quantify polarization on even gold (Au) surfaces in contact with water and with aqueous solutions of peptides of different charge state (A3 and Flg-Na3) by molecular dynamics simulation in all-atomic resolution and a posteriori computation of the image potential. Attractive polarization scales with the magnitude of atomic charges and with the length of multi-poles in the aqueous phase such as the distance between cationic and anionic groups. The polarization energy per surface area is similar on aqueous Au {1 1 1} and Au {1 0 0} interfaces of approximately −50 mJ m−2 and decreases to −70 mJ m−2 in the presence of charged peptides. In molecular terms, the polarization energy corresponds to −2.3 and −0.1 kJ mol−1 for water in the first and second molecular layers on the metal surface, and to between −40 and 0 kJ mol−1 for individual amino acids in the peptides depending on the charge state, multi-pole length and proximity to the surface. The net contribution of polarization to peptide adsorption on the metal surface is determined by the balance between polarization by the peptide and loss of polarization by replaced surface-bound water. On metal surfaces with significant epitaxial attraction of peptides such as Au {1 1 1}, polarization contributes only 10–20% to total adsorption related to similar polarity of water and of amino acids. On metal surfaces with weak epitaxial attraction of peptides such as Au {1 0 0}, polarization is a major contribution to adsorption, especially for charged peptides (−80 kJ mol−1 for peptide Flg-Na3). A remaining water interlayer between the metal surface and the peptide then reduces losses in polarization energy by replaced surface-bound water. Computed polarization energies are sensitive to the precise location of the image plane (within tenths of Angstroms near the jellium edge). The computational method can be extended to complex nanometre and micrometer-size surface topologies.  相似文献   

18.
The electroplating technique is used for producing thin sheets of copper- or nickel-based composites containing different volume fractions of -alumina dispersions. The microhardness and tensile behaviour of such composites, in both the as-deposited and the annealed state, are characterized. The strengthening mechanism of electroplated composites is found to be a combination of Orowan-type strengthening and the Hall–Petch effect.  相似文献   

19.
Hierarchically porous MOFs (HP-MOFs) are commonly prepared by means of hydrothermal synthesis. Nonetheless, its relatively long crystallization time and harsh synthesis conditions have strongly obstructed the enhancement of HP-MOFs space–time yields (STYs) and the decrease in energy consumption. Herein, a simple and versatile method for preparing various HP-MOFs at room temperature was demonstrated, which had introduced surfactant as the template, whereas zinc oxide (ZnO) has been used as an accelerant. The resulting HP-MOFs showed multimodal hierarchical porous structures and excellent thermal stability. More importantly, the synthesis time was reduced dramatically to 11 min, with a maximal HP-MOFs STY of as high as 2575 kg m?3 d?1. Furthermore, the rapid formation process of HP-MOFs was examined through quantum chemistry calculation, and a feasible synthesis mechanism was also proposed. Notably, our synthesis strategy had shown a versatility, since other surfactants could also be used as the templates for the rapid room-temperature fabrication of diverse stable HP-MOFs. Importantly, the porosity of the HP-MOFs could be readily tuned through controlling the type of template. Moreover, gas adsorption measurement of HP-MOFs revealed high CH4 uptake capacity at 298 K due to the increase in surface area and pore volume. Our findings suggest that such method is applicable for the rapid synthesis of a wide variety of HP-MOFs on an industrial scale.  相似文献   

20.
Ultrasound-assisted brazing of Cu/Al dissimilar metals was performed using a Zn–3Al filler metal. The effects of brazing temperature on the microstructure and mechanical properties of Cu/Al joints were investigated. Results showed that excellent metallurgic bonding could be obtained in the fluxless brazed Cu/Al joints with the assistance of ultrasonic vibration. In the joint brazed at 400 °C, the filler metal layer showed a non-uniform microstructure and a thick CuZn5 IMC layer was found on the Cu interface. Increasing the brazing temperature to 440 °C, however, leaded to a refined and dispersed microstructure of the filler metal layer and to a thin Al4.2Cu3.2Zn0.7 serrate structure in the Cu interfacial IMC layer. Further increasing the brazing temperature to 480 °C resulted in the coarsening of the filler metal and the significantly growth of the Al4.2Cu3.2Zn0.7 IMC layer into a dendrite structure. Nanoindentation tests showed that the hardness of the Al4.2Cu3.2Zn0.7 and CuZn5 phase was 11.4 and 4.65 GPa, respectively. Tensile strength tests showed that all the Cu/Al joints were failed in the Cu interfacial regions. The joint brazed at 440 °C exhibited the highest tensile strength of 78.93 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号