首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Abstract

In this paper we introduce the even binomal state, which interpolates between the even number state and the even coherent state. We consider the effect of this state on the Glauber second order correlation function. Both squeezing phenomena are discussed, i.e., normal squeezing and amplitude squared squeezing. The quasiprobability distribution functions (Wigner function and Q function) for such a state are also examined.  相似文献   

2.
Abstract

It is shown that some 17 Rydberg Na atoms initially placed into a coherent atomic state and super-radiating into a low-Q microwave cavity at temperatures T ? 0·4 K will show modest squeezing in the fluorescence field, the squeezing arising from terms oscillating at twice the cavity frequency. It is also shown that similar numbers of Rydberg atoms undergoing resonance fluorescence in a coherent single-mode microwave driving field and without any cavity will show more substantial squeezing in the fluorescence field.  相似文献   

3.
Abstract

New coherent states of a harmonic oscillator in a finite-dimensional Fock space are introduced. Some properties of these coherent states are discussed. The second-order squeezing of these coherent states with respect to the quadrature operators is studied in detail. In particular, for a two-state system the arbitrary higher-order squeezing of these states is investigated. It is shown that these coherent states exhibit much richer squeezing properties than the coherent states of a usual harmonic oscillator in an infinite-dimensional Fock space. It is found that these coherent states have not only second-order squeezing but also higher-order squeezing with respect to the quadrature operators of the field under consideration.  相似文献   

4.
Abstract

In this paper we have employed the generalized two-mode squeeze operator to discuss the effect of squeezing on two-mode coherent states, number states and thermal states. By using the Glauber second-order correlation function we examined the statistical properties of these various squeezed states. The statistical investigations are carried out for the quasi-probability distribution functions (Wigner function and Q function). The P representation is also considered.  相似文献   

5.
Abstract

The squeezing properties of the multiphoton Hamiltonian with intensity-dependent coupling are evaluated for the [xcirc] and [pcirc] x quadratures, for the initial state of a coherent electromagnetic field and an atom in the ground state. Two measures of squeezing: the percentage of total squeezing and the squeezing time-period percentage, are introduced. Interesting squeezing properties with respect to [xcirc] are observed for real coherent states when the time evolution of the above measures and of the time-averaged squeezing are analysed. The multiphoton intensity-dependent coupling Hamiltonian is found to be almost independent of the specific powers of the annihilation and creation operators, as long as the sum of the powers is kept constant.  相似文献   

6.
In this paper, based on the nonlinear coherent states formalism and using the Hamiltonian for a single mode field in a Kerr medium, the deformed photon-added nonlinear coherent states with negative m corresponding to the nonharmonic oscillators are constructed. In addition, some of the nonclassical properties associated with these states such as the Mandel parameter, quadrature squeezing and second-order correlation function are investigated. It is found that the deformed photon-added nonlinear coherent states with negative m for the one-mode field in a Kerr medium are nonclassical states.  相似文献   

7.
Abstract

We study the dynamics of an N-level atom coupled in a lossless cavity to a single-mode near-resonant quantized field. The atomic levels are coupled by the multiphoton transitions and the coupling constants between the field and the atomic levels are supposed to be intensity dependent. We find the exact solution for the state vector describing the dynamics of the atom-plus-field system. As an illustration we use the model for studying (i) the time evolution of the atomic occupation probability with the initially coherent field and (ii) the light squeezing, when the cavity field is initially in the vacuum state and the atom is prepared in the atomic ‘coherent state’ (a superposition of atomic states).  相似文献   

8.
Abstract

Using a perturbation method, constructed in terms of SU(2) group representations, the interaction of N initially unexcited two-level atoms and a weak single-mode cavity field is studied. The field is assumed to be initially either in a Fock state with a number of photons equal to n or in a coherent state. In the case of the photon-number state with n  3, the pure phenomenon of collective collapses and revivals manifests itself. For the initially coherent field the phenomenon of collapses and revivals arising from the photon number distribution mechanism is additionally modulated by this collective mechanism. The problem of the interaction of excited atoms with an initially coherent field has already been solved numerically by Barnett and Knight. For n=1 2 and 3 the approximate solution is compared with the exact solutions also given in this paper and the limit of applicability of our approach is established.  相似文献   

9.
Abstract

In the present work we study the effects of squeezing on coherent states, number states, and on the thermal field states related to the time evolution operator, which is the result of the Hamiltonian describing the simultaneous non-degenerate parametric amplifier with mixing of two modes a and b via a rotation of their polarization. By using the Glauber second-order correlation function we examined the statistical properties of these various squeezed states. The quasi-probabilities of the W Wigner and Q functions are calculated. The Glauber P representation for the squeezed thermal state explicitly shows the limit of its applicability.  相似文献   

10.
Abstract

We propose a scheme to add/subtract excitations to/from an arbitrary quantum state or the harmonic oscillator. The method displaces the photon-number distribution and leaves its shape unchanged for a wide range of displacements. Mathematically this is realized by the action of phase operators of the Susskind-Glogower type onto the initial quantum state. Consequently, the shape of the phase distribution is preserved unless the number statistics are modified due to displacing it by subtraction onto the vacuum state. Starting with an initially coherent state one may realize pure quantum states displaying either amplitude or phase squeezing. The implementation of the method is based on interactions of the Jaynes-Cummings type, in the case of subtracting quanta one additionally needs to perform measurements on the electronic quantum state of the atoms. Our approach could be used for adding and subtracting both photons on a cavity field and motional quanta of a trapped ion.  相似文献   

11.
Abstract

We present a detailed discussion of a type of four-photon coherent state defined as right eigenstates of the operator â 4 where â is the usual annihilation operator. There are actually four sets of states that need to be considered, namely those containing as the lowest number states ¦0>, ¦1>, ¦2>, or ¦3>. These correspond to the possible unique superpositions of the ordinary coherent states ¦±α> and ¦±iα>. We discuss the nonclassical properties of these states such as photon antibunching and squeezing. The usual second order squeezing does not exist for these states but higher order squeezing and square field amplitude squeezing do exist. Also discussed are the quasiprobability distributions, namely the P-function, the Q-function and the Wigner function. Finally, a method of generating these states based on the competition between a four-photon parametric process and incoherent losses from four-photon absorption is presented.  相似文献   

12.
Abstract

The effect of squeezing on binomial states and on negative binomial states is studied in terms of second-order correlation functions and quasi-probabilities of Wigner and Q-functions. The photon number distribution of these states is also discussed. The results presented for squeezed binomial (negative binomial) states may be useful for studying a transition from squeezed coherent states to squeezed number (quasi-thermal) states.  相似文献   

13.
Abstract

The sampling functions needed to reconstruct from quadrature distributions the density matrix elements in the displaced Fock-state basis are determined as scaled and shifted pattern functions fmn used to reconstruct the density matrix elements Q mn in the Fock-state basis. Having at hand the diagonal density matrix elements one can reconstruct any s-parametrized quasiprobability distribution via a simple weighted sum over these quantities. A smoothed Wigner function can be directly sampled from the measured quadrature distribution of the signal field. The corresponding sampling function is just a shifted and scaled version of f 00.  相似文献   

14.
Abstract

We investigate some of the fundamental features of the interaction of squeezed light with two-level atoms in the framework of the Jaynes-Cummings model. We start our analysis by calculating the collapses and revivals of the atomic inversion. We discuss the degree of purity of the field (given by the entropy) and its disentanglement from the atomic source. The connection with the evolution of the Q-function is also made. We notice that contrary to the coherent state case, the field turns into a nearly pure (squeezed) state at the revival time as if the field was prepared in a coherent state. The field also becomes a superposition of squeezed states at half of the revival time, and this is confirmed by investigating the photon number distribution. The phase properties of the field are discussed using the Pegg-Barnett formalism.  相似文献   

15.
Abstract

We investigate some of the basic features of the interaction of superpositions of coherent states of light with two-level atoms in the framework of the Jaynes-Cummings model. We compare the behaviour of the system in the case of having a coherent superposition state and a statistical mixture of coherent states as an initial field. We investigate the collapses and revivals of the atomic inversion by studying the evolution of the Q function of the cavity field. We also establish the connection between the purity of the field and the collapses and revivals of the atomic inversion.  相似文献   

16.
Abstract

The dynamical properties of a two-level atom interacting with a single non-decaying mode of an electromagnetic field in a binomial state are studied. The statistical aspects of the field, such as intensity-intensity correlation and squeezing, are also investigated. The binomial state reduces to a pure number state and a pure coherent state in different limits. Hence it enables us to study how the sinusoidal Rabi oscillations in a pure number state develop to give rise to the phenomenon of collapse and revival which has been studied extensively in the coherent-state field. In addition, the binomial state exhibits squeezing for certain values of parameters, but it is not a minimum-uncertainty-product state.  相似文献   

17.
Abstract

The ‘regularized’ form of the Glauber-Sudershan P function in terms of a series of Laguerre polynomials proposed by Perina and Mista is reconsidered. It is shown that the corresponding expansion coefficients result from averaging sampling functions well known from optical homodyne tomography with respect to the quadrature distribution of the signal field. An illustrative example of a nonclassical state is considered.  相似文献   

18.
Abstract

Quadrature variances of a radiation field depend not only on the photon number distribution in the field but also on the relative phases of the photon number probability amplitudes. Two fields with the same photon number distribution can show different degrees of squeezing if photon number states are superposed with different relative phases. It is thus possible, for example, for a radiation field with Poissonian photon statistics to exhibit squeezed quadrature fluctuations. Since different relative superposition phases in general yield different maximum and minimum values of the quadrature variances, measurement of the variances can yield information concerning the relative phases between different number states.  相似文献   

19.
Abstract

We examine the non-classical properties of two-mode coherent states based on different unitary irreducible representations of SU(1, 1). Such states are generated by the action of the two-mode squeezing operator on initial states of the field containing arbitrary numbers of photons in each of the two modes. If the initial state of the field is a two-mode vacuum state, the final state is of course the two-mode squeezed vacuum. An initial occupation generalizes the idea of a squeezed vacuum to the SU(1, 1) coherent states. We show that fields in such states have remarkable quantum properties such as sub-Poissonian statistics, violations of the Cauchy-Schwarz inequality, strong correlations in the photon number fluctuations and squeezing. Using information theory formalism, we show that these coherent states are less correlated than the usual two-mode squeezed vacuum. Moreover, we show that an initial coherent amplitude contribution, in a large amplitude limit, can result in the reduction of correlations between modes.  相似文献   

20.
Abstract

Higher-generation Schrödinger cat states of the quantized electromagnetic field can be produced in a high-Q cavity, starting from a coherent state, through the passage of prepared Rydberg atoms interacting dispersively across it. These states are natural generalizations of the even and odd coherent states, the N th-generations corresponding to specific superpositions of 2 N states on a circle in phase space with well defined parity, and present very peculiar properties. Their photon statistics interchange between super- and sub-Poissonian behaviours and the nature of the photon bunching oscillates as the field intensity in the cavity is varied. For higher-generation even states, the minimum value of the Mandel factor almost reaches ?1.0 and the state represents the Fock state |2 N ). Squeezing properties and the Wigner function of these higher-generation Schrödinger cat states are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号