首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kumar A  Rastogi V  Agrawal A  Rahman BM 《Applied optics》2012,51(15):3104-3108
We present a full-vectorial modal analysis of a segmented cladding fiber (SCF). The analysis is based on the H-field vectorial finite element method (VFEM) employing polar mesh geometry. Using this method, we have analyzed the circular SCF and the elliptical SCF. We have found that the birefringence of the circular SCF is very small (1.0×10(-8)). Birefringence of a highly elliptical SCF can be altered to some extent by the number of segments and duty cycle of segmentation in the segmented cladding. However, the change is not profound. The analysis shows that the circular SCF possesses low birefringence and that the segmented cladding does not add any significant birefringence in an elliptical fiber. This result strongly indicates that small deviations in the segmented cladding parameters arising from fabrication process do not significantly affect the birefringence of the fiber.  相似文献   

2.
We report on birefringence measurements in double-clad fibers with large cross section, doped with neodymium and ytterbium. The experimental results for rectangular double-clad fibers are compared with those for single-clad circular neodymium-doped fibers, taking into account existing models of stress- and geometry-induced birefringence. We demonstrated that the ellipticity of an outer silica cladding has no effect on birefringence in large-area double-clad fibers. The stress-induced birefringence is shown to depend on the ratio between the diameter of an internal silica support and the linear dimensions of the rectangular outer cladding. The stress-distribution pattern is derived to prove the experimental results.  相似文献   

3.
The paper considers the elastostatic axisymmetric problem for a long thick-walled cylinder containing an axisymmetric circumferential internal or edge crack with cladding. The cladding is assumed to be bonded to inner wall of the hollow cylinder. Using the standard transform technique, the problem is formulated in terms of an integral equation of the first kind which has a generalized Cauchy kernel as the dominant part. The integral equation is solved numerically by using appropriate quadrature formulas. The related stress-intensity factors are calculated for the hollow cylinder with cladding under axial load. The influence of the geometrical configuration and the cladding on the stress-intensity factors is shown graphically.  相似文献   

4.
We analyse the influence of coupling to symmetric and antisymmetric cladding modes in arc-induced Long-Period Fiber Gratings for temperature and strain sensing. The origin of this difference in energy coupling is related to the fabrication process of these gratings and depends on the electric arc discharge conditions, which modulates the refractive index and geometry of the optical fiber. Finally, results demonstrate the performance of different cladding modes excited in arc-induced LPFGs to temperature and strain applications and, in addition, indicate which coupling might be appropriate to certain sensing applications.  相似文献   

5.
The sensitivity to surrounding refractive index (SRI) of a long-period fiber grating (LPFG) can be effectively improved by decreasing the cladding radius. When the cladding is reduced, a three-layer model is necessary to evaluate the effective refractive index (ERI) of the core mode. A variation of SRI can induce a greater resonant wavelength shift when the core mode is coupled to a higher-order cladding mode. However, as the cladding is reduced further, the highest-order cladding mode would be cut off, i.e. the number of cladding modes that a given fiber structure can support would be less; thus, the higher-order cladding modes that can be used for higher sensitivity are limited. Hence, the implementation of high sensitivity for SRI sensing with cladding-reduced LPFGs is dependent on the proper combination of cladding radius and cladding mode order. Based on the vector coupled-mode theory, the transmission spectrum and sensitivity are numerically analyzed with respect to the cladding radius, which shows that the SRI sensitivity of the HE12 mode with cladding radius a 2?=?20?µm is 32 times as high as that with a 2?=?62.5?µm and the SRI resolution is available to the order of 10?7.  相似文献   

6.
Based on the hybrid cladding design, a single-mode photonic crystal fibre (PCF) is proposed to achieve an ultra-high birefringence and large negative dispersion coefficient using finite-element method. Simulation results reveal that with optimal design parameters, it is possible to achieve an ultra-high birefringence of 2.64 × 10?2 at the excitation wavelength of 1.55 μm. The designed structure also shows large dispersion coefficient about ?242.22 to ?762.6 ps/nm/km over the wavelength ranging from 1.30 to 1.65 μm. Moreover, residual dispersion, effective dispersion, effective area, confinement loss and nonlinear coefficient of the proposed PCF are discussed thoroughly.  相似文献   

7.
In this paper, a novel design double lattice photonic crystal fiber is proposed for achieving both high birefringence and low confinement loss. In this structure, circular air holes are arranged as octagonal lattice in the cladding and elliptical as rectangular lattice in the core region. Numerical results illustrate that the birefringence in such fibers is determined not only by the double lattice but also the changing of the shape and the arrangement of the air hole in the first inner rings of the cladding. The birefringence property and confinement loss are studied by employing the finite difference time domain method with transparent boundary condition. The numerical results demonstrate that the maximal birefringence and lowest confinement loss of our optimized structure PCF at the excitation wavelength of λ = 1550 nm can be achieved at 5.16 × 10?2 and 0.003 dB/km, respectively.  相似文献   

8.
Abstract

Modified chemical vapor deposition method was used to fabricate single mode optical fibers. Both matched and depressed cladding single mode fibers were designed and fabricated. Loss as low as 0.3 dB/km has been obtained at wavelength 1.55 μm.  相似文献   

9.
An accurate investigation of an integrated optical polariser has been presented. The transverse magnetic (TM)-passing property for an asymmetrical slab with anisotropic cladding that behaves as negative or positive uniaxial crystal has been evaluated. After a modal analysis, the polarisation of the electromagnetic (EM) field is evaluated by means of transmission line matrix-integral equation (TLMIE) method which performs a 3D full-wave modelling of the structure (i) including dielectric losses and (ii) for different slant angle of the laminated cladding. The TLMIE method permits to maximise the TM-passing property for a single-mode channel with anisotropic cladding.  相似文献   

10.
The pump absorption properties in co-linear side-pumping schemes composed of a double-clad fiber with special inner cladding and a coreless pump fiber were investigated using the beam propagation method. The absorption efficiency of high-order modes is higher than that of low-order modes. The pump absorption efficiency enhances with the growth of the ratio of inner cladding diameter of main fiber to the diameter of pump fiber. Furthermore, the pump absorption with a non-circular inner cladding is higher than that with a circular inner cladding. In addition, the absorption in the system with a D-shaped inner cladding is hardly affected by the arrangement of the main fiber and pump fiber.  相似文献   

11.
金刚石表面金属化的研究现状   总被引:8,自引:1,他引:7  
主要介绍了金刚石表面金属化的原理、模型;金刚石表面金属化的几种制备方法:化学镀加电镀、真空镀、盐浴镀以及各种方法的优缺点,并综述了国内外金刚石表面金属化的研究进展;同时归纳总结了金刚石表面金属化的表征方法.  相似文献   

12.
钛合金表面激光熔覆TiC/NiCrBSi涂层温度场有限元模拟   总被引:1,自引:0,他引:1  
为在钛合金表面获得优质激光熔覆涂层,用有限元方法研究了激光熔覆工艺对熔池温度场分布和凝固后熔覆层组织的影响,考虑相变潜热、辐射对流散热以及温度对热物理性能的影响等因素,建立三维有限元模型模拟了Ti6Al4V合金表面激光熔覆TiC/NiCrBSi复合涂层过程中的温度场,并结合熔覆过程的温度场分布,对涂层的形貌、结合区、基...  相似文献   

13.
This paper presents highly birefringent photonic crystal fibers with simultaneously near-zero dispersion and low confinement losses. The finite difference time domain method with anisotropic perfectly matched layer boundaries is used as the simulation software. According to simulation, it is shown that photonic crystal fibers with hybrid cladding and artificial defects along one of the orthogonal axes sufficiently results in a very high birefringence of the order 10?2 which is two orders of magnitude higher than that of the conventional polarization maintaining fibers. Such a fiber also assumes both near-zero dispersion and low confinement losses at the 1550 nm wavelength. Optical fibers with novel properties such as high birefringence, near-zero dispersion, and low confinement losses may have applications in optical sensing applications.  相似文献   

14.
In the present study, a double-layer foam cladding is proposed to fulfill different structural protection purposes. The energy absorption capacity of the double-layer foam cladding under blast load is analytically derived based on a rigid-perfectly plastic-locking foam model. Different configurations of the layered foam cladding are studied. The maximum absorbed energy and the maximum blast impulse that can be resisted by the cladding are calculated. Numerical simulation with finite element method is also carried out. Good agreement is found between the analytical and the numerical results. The present analytical solution of the energy absorption capacity of the double-layer foam cladding can be effectively used for sacrificial foam cladding design.  相似文献   

15.
We report on a new hybrid approach to realize optical slab waveguides for optical amplification purposes. The structure consists of a dye-doped polymer core (PMMA) deposited over an oxidized porous silicon (PS) cladding layer formed on a silicon wafer. The very low refractive index (n = 1.16) achievable in the cladding allows obtaining monomodal behavior with high confinement factors (ΓTE = 96%) even for very thin cores (400 nm). Optically excited guided luminescence shows stimulated emission, strong line narrowing and a clear threshold and superlinear behavior with pump energy. By means of the variable stripe length (VSL) technique, values of net optical gain up to 113 dB/cm (constant over 3 mm) and absolute amplification values up to 34 dB have been measured at 694 nm when pumping with 80 mJ/cm2 energy pulses. These results validate the use of oxidized PS as a cladding layer in silicon photonics.  相似文献   

16.
The aim of this paper is to investigate the influence of laser re-melting on the geometry and overlapping pores of cladding coating. In this study, Fe-based alloy mixed with 5 wt.% Cr3C2 powder was used as cladding material to obtain high hardness and strength coating. However, this coating has overlapping pores and a rough surface. Therefore, re-melting process is explored systematically. The geometry, microhardness and microstructure of the coatings have been analyzed and compared subsequently. Besides, a 3D finite element model has been built to provide a thermal field analysis for laser re-melting. Finally, it is found that re-melting process is an effective method to improve the surface smoothness of cladding layer, which could reduce the process cycle and cost of secondary operations. More importantly, it could remove the overlapping pores easily.  相似文献   

17.
为了研究玄武岩纤维网格布和玻璃纤维网格布的耐碱腐蚀性及其对混凝土方板双向受弯性能的影响,进行了玄武岩纤维和高锆玻璃纤维的耐碱试验和其网格布增强混凝土双向板的弯曲性能试验。借鉴欧洲EFNARC标准,利用四边简支方板试验,对比分析了不同纤维网格布对混凝土方板的双向增强效应。结果表明,与玄武岩纤维相比,高锆玻璃纤维的耐碱腐蚀性更好。纤维网格布较高的双向受拉性能可改善混凝土双向板的内力和应力重分布能力,玄武岩纤维网格布和高锆玻璃纤维网格布使水泥双向板的受弯承载力分别提高了48%和59%,高锆玻璃纤维的双向增强作用优于玄武岩纤维。   相似文献   

18.
熔覆技术具有诸多优点,已经大量应用于工业生产中.近年来,在传统熔覆技术基础上发展而来的复合熔覆技术,可以显著提高涂层的综合性能,给表面强化技术注入了新的动力.本文在概述了激光熔覆、等离子熔覆和感应熔覆等传统熔覆技术的基础上,对近年来国内外不同热源间的复合熔覆技术、辅助技术复合熔覆技术及其应用现状进行了综述,总结了现有技...  相似文献   

19.
In this paper, the effects of nonzero inner scales and finite outer scales are investigated, in the context of Gaussian beam propagation along a slant path under general turbulence conditions. Theoretical expressions for the cut-off spatial frequencies are derived with an approach method, and thereby a modified scintillation model is developed to incorporate inner scale and outer scale parameters in the analysis. Then, inner and outer scale effects on the downlink are analysed with respect to the zenith angle, the altitude of the transmitter, the initial beam radius, as well as the turbulence strength. Numerical results indicate that the effects of a finite outer scale mainly influence transmission that occurs at large zenith angles or high altitudes, while the inner scale effects are more prevalent. This study may be helpful to improve the accuracy of calculation of slant-path scintillation index, and thus benefit the characterization and optimization of space/air-ground laser communication systems.  相似文献   

20.
Within plate-type dispersion nuclear fuel elements, besides irradiation swelling of fuel particles induced by nuclear fissions, the metal matrix and the cladding are attacked continuously by the fast neutrons released from the fuel particles. As a consequence, the matrix undergoes a bit irradiation swelling and the cladding takes on irradiation growth, which both might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, the three-dimensional large-strain constitutive relations for the fuel particles, the metal matrix and cladding are developed; based on them, the method of virtual temperature increase proposed by Ding et al. (2008) is further developed to model the irradiation swelling; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-temperature-loadstep is proposed to simulate the coupling features of the irradiation swellings of both the metal matrix and the fuel particles together with the irradiation growth of the cladding. In order to clarify the critical factors that affect their mechanical performances and carry out optimal design, with the aid of the research thoughts of particle-reinforced composites, numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate the effects of irradiation swelling of the matrix and irradiation growth of the cladding as that: (1) they might weaken the in-pile mechanical performances at the matrix to some extent; and (2) the former increases interfacial stresses between the fuel meat and the cladding, while the latter relatively relieve those interfacial stresses; and the interfacial mechanical strength might be improved by getting suitable irradiation growth mode of the cladding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号