共查询到20条相似文献,搜索用时 15 毫秒
1.
Andrea Ravagli Christopher Craig Ghada A. Alzaidy Paul Bastock Daniel W. Hewak 《Advanced materials (Deerfield Beach, Fla.)》2017,29(27)
Gallium lanthanum sulfide glass (GLS) has been widely studied in the last 40 years for middle‐infrared applications. In this work, the results of the substitution of selenium for sulphur in GLS glass are described. The samples are prepared via melt‐quench method in an argon‐purged atmosphere. A wide range of compositional substitutions are studied to define the glass‐forming region of the modified material. The complete substitution of Ga2S3 by Ga2Se3 is achieved by involving new higher quenching rate techniques compared to those containing only sulfides. The samples exhibiting glassy characteristics are further characterized. In particular, the optical and thermal properties of the sample are investigated in order to understand the role of selenium in the formation of the glass. The addition of selenium to GLS glass generally results in a lower glass transition temperature and an extended transmission window. Particularly, the IR edge is found to be extended from about 9 µm for GLS glass to about 15 µm for Se‐added GLS glass defined by the 50% transmission point. Furthermore, the addition of selenium does not affect the UV edge dramatically. The role of selenium is hypothesized in the glass formation to explain these changes. 相似文献
2.
S C Agarwal 《Bulletin of Materials Science》1995,18(6):669-678
The effect of light soaking and thermal quenching on the electronic structure of hydrogenated amorphous silicon (a-Si:H) and chalcogenide glasses was studied. It was found that lithium dopeda-Si:H shows both light and thermal induced changes in electronic transport properties. In contrast, chalcogenides do not show
any effect of thermal quenching, although they exhibit changes upon light soaking. By analysing the conductivity and thermopower
data we have concluded that the light soaking increases the potential fluctuations present in lithium dopeda-Si:H, whereas quenching does not change them. A model qualitatively explaining these effects is presented. 相似文献
3.
Tian-Ran Wei Pengfei Qiu Kunpeng Zhao Xun Shi Lidong Chen 《Advanced materials (Deerfield Beach, Fla.)》2023,35(1):2110236
Thermoelectric technology provides a promising solution to sustainable energy utilization and scalable power supply. Recently, Ag2Q-based (Q = S, Se, Te) silver chalcogenides have come forth as potential thermoelectric materials that are endowed with complex crystal structures, high carrier mobility coupled with low lattice thermal conductivity, and even exceptional plasticity. This review presents the latest advances in this material family, from binary compounds to ternary and quaternary alloys, covering the understanding of multi-scale structures and peculiar properties, the optimization of thermoelectric performance, and the rational design of new materials. The “composition-phase structure-thermoelectric/mechanical properties” correlation is emphasized. Flexible and hetero-shaped thermoelectric prototypes based on Ag2Q materials are also demonstrated. Several key problems and challenges are put forward concerning further understanding and optimization of Ag2Q-based thermoelectric chalcogenides. 相似文献
4.
采用反应磁控溅射技术, 通过改变溅射靶电流实现了不同Ag掺杂含量0.7at%~41.4at%非晶碳膜(a-C:Ag)的可控制备, 并系统研究了Ag含量对薄膜组分、结构、机械特性的影响规律, 以及薄膜的电学特性。结果表明: 当Ag含量在0.7at%~1.2at%时, Ag原子固溶于非晶碳基质; 当Ag含量在13.0at%~41.4at%范围, 薄膜中出现尺寸约为6 nm的Ag纳米晶。随着Ag含量增加, 碳网络结构的sp 2团簇尺寸增大, 结构无序度降低。应力测试表明, 在低Ag含量范围, Ag原子固溶于碳膜网络结构中, 起到枢纽作用, 促进碳网络结构键长、键角畸变弛豫, 从而降低薄膜应力。随着Ag含量增加, 部分Ag原子将形成Ag纳米晶粒, 薄膜通过Ag纳米晶与非晶碳界面处的滑移以及扩散作用释放过高的畸变能降低应力。Ag含量为37.8at%时, 在11.6 K附近, 薄膜出现金属-半导体特性转变。而Ag含量为41.4at%的薄膜, 在2~400 K测试温度范围内, 均表现为半导体特性, 其中在164~400 K范围内, 薄膜表现出典型的热激活导电机制。 相似文献
5.
6.
7.
Minkyung Lee Woobin Lee Seungbeom Choi Jeong‐Wan Jo Jaekyun Kim Sung Kyu Park Yong‐Hoon Kim 《Advanced materials (Deerfield Beach, Fla.)》2017,29(28)
The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. 相似文献
8.
The electronic band-edges of lead chalcogenides PbY and tin chalcogenides SnY (where Y = S, Se, and Te) are investigated by the means of a full-potential linearized augmented plane wave (FPLAPW) method and the local density approximation (LDA). All six chalcogenide binaries have similar electronic structures and density-of-states, but there are differences in the symmetry of the band-edge states at and near the Brillouin zone L-point. These differences give the characteristic composition, pressure, and temperature dependences of the energy gap in Pb1−xSnxY alloys.We find that: (1) SnY are zero-gap semiconductors Eg = 0 if the spin–orbit (SO) interaction is excluded. The reason for this is that the conduction band (CB) and the valence band (VB) cross along the Q ≡ LW line. (2) Including the SO interaction splits this crossing and creates a direct gap along the Q-line, thus away from the L symmetry point. Hence, the fundamental band gap Eg in SnY is induced by the SO interaction and the energy gap is rather small Eg ≈ 0.2–0.3 eV. At the L-point, the CB state has symmetric and the VB state is antisymmetric thereby the L-point pressure coefficient ∂Eg(L)/∂p is a positive quantity. (3) PbY have a direct band gap at the L-point both when SO coupling is excluded and included. In contrast to SnY, the SO interaction decreases the gap energy in PbY. (4) Including the SO interaction, the LDA yields incorrect symmetries of the band-edge states at the L-point; the CB state has and the VB state has symmetry. However, a small increase of the cell volume corrects this LDA failure, producing an antisymmetric CB state and a symmetric VB state, and thereby also yields the characteristic negative pressure coefficient ∂Eg(L)/∂p in agreement with experimental findings. (5) Although PbY and SnY have different band-edge physics at their respective equilibrium lattice constants, the change of the band-edges with respect to cell volume is qualitatively the same for all six chalcogenides. (6) Finally, in the discussion of the symmetry of the band edges, it is important to clearly state the chosen unit cell origin; a shift by (a/2,0,0) changes the labeling of the irreducible representations. 相似文献
9.
The precise nature of chemical-bonding interactions in amorphous, and crystalline, chalcogenides is still unclear due to the complexity arising from the delocalization of bonding, and nonbonding, electrons. Although an increasing degree of electron delocalization for elements down a column of the periodic table is widely recognized, its influence on chemical-bonding interactions, and on consequent material properties, of chalcogenides has not previously been comprehensively understood from an atomistic point of view. Here, a chemical-bonding framework is provided for understanding the behavior of chalcogenides (and, in principle, other lone-pair materials) by studying prototypical telluride nonvolatile-memory, “phase-change” materials (PCMs), and related chalcogenide compounds, via density-functional-theory molecular-dynamics (DFT-MD) simulations. Identification of the presence of previously unconsidered multicenter “hyperbonding” (lone-pair–antibonding-orbital) interactions elucidates not only the origin of various material properties, and their contrast in magnitude between amorphous and crystalline phases, but also the very similar chemical-bonding nature between crystalline PCMs and one of the bonding subgroups (with the same bond length) found in amorphous PCMs, in marked contrast to existing viewpoints. The structure–property relationship established from this new bonding-interaction perspective will help in designing improved chalcogenide materials for diverse applications, based on a fundamental chemical-bonding point of view. 相似文献
10.
非晶半导体的研究与应用 总被引:2,自引:0,他引:2
1968年Ovshinsky在多元硫系薄膜中观察到电的开关与存贮效应以来,特别是1975年氢化非晶Si的p型与n型掺杂控制的实现,非晶半导体作为一个重要的电子材料,在过去的30多年中吸引了大量的基础研究并得到了广泛的应用。本文综述了至今为止非晶半导体重要的研究与应用进展,并探讨非晶半导体今后主要的发展趋势。 相似文献
11.
12.
《Advanced Materials Interfaces》2018,5(8)
The multilayer HfSe2 on sapphire is first fabricated by the ion beam‐assisted process combining ion implantation with the post annealing. The A1g mode of HfSe2 is shown in the Raman spectrum, the X‐ray photoelectron spectroscopy results indicate the existence of Hf–Se bonding, and the transmission electron microscopy analysis exactly identifies the crystal structure of HfSe2. The six‐layered (6L) octahedral HfSe2 (1T‐HfSe2), whose band structure is well realized by utilizing photoluminescence spectroscopy compared with the results of the density functional theory calculation, is formed via the Hf selenization during annealing. 相似文献
13.
14.
Ultrathin two‐dimensional (2D) layered transition metal dichalcogenides (TMDs), such as MoS2, WS2, TiS2, TaS2, ReS2, MoSe2 and WSe2, have attracted considerable attention over the past six years owing to their unique properties and great potential in a wide range of applications. Aiming to achieve tunable properties and optimal application performances, great effort is devoted to the exploration of 2D multinary layered metal chalcogenide nanomaterials, which include ternary metal chalcogenides with well‐defined crystal structures, alloyed TMDs, heteroatom‐doped TMDs and 2D metal chalcogenide heteronanostructures. These novel 2D multinary layered metal chalcogenide nanomaterials exhibit some unique properties compared to 2D binary TMD counterparts, thus holding great promise in various potential applications including electronics/optoelectronics, catalysis, sensors, biomedicine, and energy storage and conversion with enhanced performances. This article focuses on the state‐of‐art progress on the preparation, characterization and applications of ultrathin 2D multinary layered metal chalcogenide nanomaterials. 相似文献
15.
热喷涂亚稳态复合涂层研究进展 总被引:4,自引:0,他引:4
热喷涂亚稳态复合涂层能克服许多亚稳材料不易直接成形的不足,有效发挥非晶、纳米晶和准晶材料的特殊功效.等离子喷涂和高速火焰喷涂亚稳态铁基、镍基、陶瓷粉末制备的涂层质量优异,在热障、耐磨、防腐等领域应用前景广阔,但尚需拓展涂层功能,降低成本.电弧喷涂粉芯丝材制备亚稳态涂层具有成本低、效率高、成分易调节等优势,在大规模高效制备耐磨、防腐、防高温腐蚀与冲蚀涂层方面优势明显,但尚需提高涂层稳定性,开发更多涂层材料体系.目前,我国需要从自动化热喷涂设备开发和新型亚稳态材料体系研究两方面展开深入研究,提高亚稳态喷涂层的组织结构稳定性和性能质量可靠性,使该技术走出实验室面向工业应用,更好地为国家循环经济建设服务. 相似文献
16.
Elvin Y. Malikov Melek C. Altay Oktay H. Akperov Mustafa B. Muradov Goncha M. Eyvazova Ákos Kukovecz 《Fullerenes, Nanotubes and Carbon Nanostructures》2018,26(5):255-262
Effect of sonication time on the synthesis of the CdS nanoparticles within the matrix obtained through the covalent functionalization of multiwall carbon nanotube (MWCNT) with maleic anhydride (MA) – 1-octene copolymer was investigated. Cadmium chloride and thiourea were used as the raw materials. MWCNTs used for the matrix were synthesized by Catalytic Chemical Vapor Deposition using Fe-Co/Al2O3 as the catalyst. The obtained nanostructures were characterized by FTIR, XRD, Raman spectroscopy, TEM, SEM, TG and UV-Vis spectroscopy. Electrophysical properties of the polymer nanocomposites obtained using different periods of time for sonication were comparably investigated. The average CdS particle diameter was between 3.9–7.9 nm as confirmed independently by TEM and XRD. UV-Vis spectroscopy revealed that the obtained nanostructures are appropriate base materials for making optical devices. 相似文献
17.
18.
19.
20.
Qing Li Yuxia Xu Shasha Zheng Xiaotian Guo Huaiguo Xue Huan Pang 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(28)
A breakthrough in technologies having “green” and sustainable energy storage conversion is urgent, and supercapacitors play a crucial role in this area of research. Owing to their unique porous structure, amorphous materials are considered one of the best active materials for high‐performance supercapacitors due to their high specific capacity, excellent cycling stability, and fast charging rate. This Review summarizes the synthesis of amorphous materials (transition metal oxides, carbon‐based materials, transition metal sulfides, phosphates, hydroxides, and their complexes) to highlight their electrochemical performance in supercapacitors. 相似文献