首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of residual phase noise measurements on a number of VHF, UHF, and microwave amplifiers, both silicon (Si) bipolar junction transistor (BJT) and gallium arsenide (GaAs) field effect transistor (FET) based, electronic phase shifters, frequency dividers and multipliers, etc., which are commonly used in a wide variety of frequency source and synthesizer applications are presented. The measurement technique has also been used to evaluate feedback oscillator components, such as the loop and buffer amplifiers, which can play important roles in determining an oscillator's output phase noise spectrum (often in very subtle ways). While some information has previously been published related to component residual phase noise properties, it generally focused on the flicker noise levels of the devices under test, for carrier offset frequencies less than 10 kHz. The work reported herein makes use of an extremely low noise, 500 MHz surface acoustic wave resonator oscillator (SAWRO) test source for residual phase noise measurements, both close-to-and far-from-the-carrier. Using this SAWRO-based test source at 500 MHz, we have been able to achieve a measurement system phase noise floor of -184 dBc/Hz, or better, for carrier offset frequencies greater than 10 kHz, and a system flicker phase noise floor of -150 dBc/Hz, or better, at 1 Hz carrier offset. The paper discusses the results of detailed residual phase noise measurements performed on a number of components using this overall system configuration. Several interesting observations related to the residual phase noise properties of moderate to high power RF amplifiers, i.e., amplifiers with 1 dB gain compression points in the range of +20 to +33 dBm, are highlighted  相似文献   

2.
We have designed and built 2 oscillators at 1.2 and 3.6 GHz based on high-overtone bulk acoustic resonators (HBARs) for application in chip-scale atomic clocks (CSACs). The measured phase noise of the 3.6 GHz oscillator is -67 dBc/Hz at 300 Hz offset and -100 dBc/Hz at 10 kHz offset. The Allan deviation of the free-running oscillator is 1.5 × 10-9 at one second integration time and the power consumption is 3.2 mW. The low phase noise allows the oscillator to be locked to a CSAC physics package without significantly degrading the clock performance.  相似文献   

3.
Two liquid nitrogen-cooled sapphire loaded cavities (SLC's) operating at about 80 K have been successfully constructed, Both cavities were designed to operate on the whispering gallery (WG) E12, 1, δ mode at a resonant frequency of 8.95 GHz. The first SLC was used as the frequency-determining element in a loop oscillator, while the second was used as a frequency discriminator to measure oscillator phase noise. The single sideband phase noise of a free running loop oscillator incorporating the first SLC was measured as -133 dBc/Hz at an offset frequency of 1 kHz, and was limited by the SLC Q-factor and the amplifier flicker phase noise. By using specially designed feedback electronics the oscillator phase noise was reduced to -156 dBc/Hz and -162 dBc/Hz at 1 and 10 kHz offset, respectively. This measurement was shown to be limited by the electronic flicker noise imposed by the phase detector in the feedback electronics, To our knowledge the phase noise and resonator Q-factor of 6×107 represent the best results ever measured at liquid nitrogen temperatures or above  相似文献   

4.
In this study, a LiNbO(3)-based SAW resonator was directly integrated with a CMOS sustaining amplifier using new wafer-bonding-based integration technology. The developed integration technology has overcome the large thermal expansion mismatch between LiNbO(3) (14 to 15 ppm/K along the a-axis) and Si (2.6 ppm/K) by temporary wafer supporting and low-temperature Au-Au bonding. Two kinds of bonding, UV polymer bonding for temporary wafer supporting and Au-Au bonding following plasma surface activation, are key process technologies. A 500-MHz one-chip SAW oscillator was prototyped and evaluated. A low phase noise of -122 dBc/ Hz at 10 kHz offset and -160 dBc/Hz at 500 kHz offset was achieved.  相似文献   

5.
The influence of the source AM noise in microwave residual phase noise experiments is investigated. The noise floor degradation problem, caused by the parasitic detection of this type of noise by an imperfectly balanced mixer, is solved thanks to a refinement of the quadrature condition. The parasitic noise contribution attributable to the AM to PM (phase modulation) conversion occurring in the device under test is minimized through the development of a dedicated microwave source featuring an AM noise level as low as -170 dBc/Hz at 10 kHz offset from a 3.5 GHz carrier  相似文献   

6.
A novel 9 GHz measurement system with thermal noise limited sensitivity has been developed for studying the fluctuations in passive microwave components. The noise floor of the measurement system is flat at offset frequencies above 1 kHz and equal to -193 dBc/Hz. The developed system is capable of measuring the noise in the quietest microwave components in real time. We discuss the results of phase and amplitude noise measurements in precision voltage controlled phase shifters and attenuators. The first reliable experimental evidences regarding the intrinsic flicker phase noise in microwave isolators are also presented.  相似文献   

7.
We report what we believe to be the lowest phase noise optical-to-microwave frequency division using fiber-based femtosecond optical frequency combs: a residual phase noise of -120 dBc/Hz at 1 Hz offset from an 11.55 GHz carrier frequency. Furthermore, we report a detailed investigation into the fundamental noise sources which affect the division process itself. Two frequency combs with quasi-identical configurations are referenced to a common ultrastable cavity laser source. To identify each of the limiting effects, we implement an ultra-low noise carrier-suppression measurement system, which avoids the detection and amplification noise of more conventional techniques. This technique suppresses these unwanted sources of noise to very low levels. In the Fourier frequency range of ~200 Hz to 100 kHz, a feed-forward technique based on a voltage-controlled phase shifter delivers a further noise reduction of 10 dB. For lower Fourier frequencies, optical power stabilization is implemented to reduce the relative intensity noise which causes unwanted phase noise through power-to-phase conversion in the detector. We implement and compare two possible control schemes based on an acousto-optical modulator and comb pump current. We also present wideband measurements of the relative intensity noise of the fiber comb.  相似文献   

8.
ABSTRACT

We experimentally demonstrate the first VCSEL-based all-optical wavelength reuse technique with reconfigurable fibre Bragg grating add and drop multiplexer. EDFA gain saturation and Bragg trans-reflection effect on a single FBG are respectively, adopted for full-duplex reference frequency and data transfer. A 1550 nm energy-efficient VCSEL is modulated with 1.7?GHz clock signal and transferred downstream over 26.6?km fibre OLT attain a phase noise stability of ?54.01 dBc/Hz at 10?kHz offset frequency. A saturated EDFA is exploited to optically reduce the peak-to-peak voltage of the incoming downstream RF, allowing for wavelength reuse with 10?Gbps upstream data. A 1.57 dB transmission penalty is incurred over the transmission fibre. An all-passive OADM is developed exploiting Bragg trans-reflection at 1549.45?nm. The reflected wavelength is routed over another 24.7?km fibre network attaining an extinction ratio of 6.1?dB and a SNR of 5.8?dB. This work provides an all-optical technique for routing and spectral management in flexible networks.  相似文献   

9.
A 5 GHz low power frequency synthesiser with a dual-modulus counter (DMC) was fabricated in 0.18 μm CMOS technology. The DMC allows to reduce the power consumption and to provide the functionality of the divider without a swallower counter. The settling time takes no more than 5 μs with an adaptive bandwidth topology. The measured phase noise is -87 dBc/Hz and -119 dBc/Hz at 10 kHz and 1 MHz offset frequencies, respectively. The reference spurs level is lower than -55 dBc at 10 MHz offset. The proposed synthesiser covers frequencies between 5.14 and 5.86 GHz in steps of 20 MHz and consumes 16.4 mW at 1.5 V supply voltage.  相似文献   

10.
Two low-noise high-Q sapphire-loaded cavity (SLC) resonators, with unloaded Q values of 2×105 and very low densities of spurious modes, have been constructed. They were designed to operate at 0°C with a center frequency of 10.000000 GHz. The cavity was cooled with a thermoelectric (TE) Peltier element, and in practice achieved the required center frequency near 1°C. The resonator has a measured frequency-temperature coefficient of -0.7 MHz/K, and a Q factor which is measured to be proportional to T-2.5. An upper limit to the SLC residual phase noise of ℒ (100) Hz=-147 dBc/Hz, ℒ (1 kHz)=-155 dBc/Hz, and ℒ (10) kHz=-160 dBc/Hz has been measured. Also, we have created a free-running loop oscillator based on one of the SLC resonators, and measured a phase noise of ℒ(f)~-10-30log [f] dBc/Hz between f=10 /Hz and 25 kHz, using the other as a discriminator  相似文献   

11.
This paper describes the design of very low noise, tunable, X-band dielectric resonator oscillators (DROs) demonstrating phase-noise performance of -135 dBc/Hz at 10 kHz offset. SiGe transistors are used for the oscillator sustaining amplifiers that offer a circulating power of 12 dBm and a gain of 5.4 dB per stage as well as a low flicker noise corner of 40 kHz. A variety of resonator configurations utilising BaTiO3 resonators are presented demonstrating unloaded Qs from 10 000 to 22 000. These resonators are optimised and coupled to the amplifiers for minimum phase noise where QL/Q0 = 1/2, and hence S21 = -6 dB. To incorporate tuning with low additional phase noise, a phase shifter is also investigated. The theory for the low noise oscillator design is included; experimental results demonstrate close correlation with the theory.  相似文献   

12.
The phase noise performance of two different microwave analog frequency dividers is characterized and compared with the values obtained using simple theories of noise in injection-locked systems. The direct measurement of the divider noise with a low phase noise synthesizer is not accurate enough, and the residual noise technique is used. The noise levels observed using this technique, between -120 and -155 dBc/Hz at a 10 kHz offset frequency, demonstrate that this divider noise is much lower than the phase noise of most microwave free running oscillators, even if this noise is still high with respect to the residual noise of amplifiers realized with the same active devices. The down conversion of microwave sources up to 40 GHz, is proposed as an application example.  相似文献   

13.
A concept of interferometric measurements has been applied to the development of ultra-sensitive microwave noise measurement systems. These systems are capable of reaching a noise performance limited only by the thermal fluctuations in their lossy components. The noise floor of a real time microwave measurement system has been measured to be equal to -193 dBc/Hz at Fourier frequencies above 1 kHz. This performance is 40 dB better than that of conventional systems and has allowed the first experimental evidence of the intrinsic phase fluctuations in microwave isolators and circulators. Microwave frequency discriminators with interferometric signal processing have proved to be extremely effective for measuring and cancelling the phase noise in oscillators. This technique has allowed the design of X-band microwave oscillators with a phase noise spectral density of order -150 dBc/Hz at 1 kHz Fourier frequency, without the use of cryogenics. Another possible application of the interferometric noise measurements systems include “flicker noise-free” microwave amplifiers and advanced two oscillator noise measurement systems  相似文献   

14.
We present the first experimental study of a new type of power recycling microwave interferometer designed for low noise measurements. This system enhances sensitivity to phase fluctuations in a device under test, independent of input power levels. The single sideband thermal white phase noise floor of the system has been lowered by 8 dB (reaching −185 dBc/Hz at 1 kHz offset frequency) at relatively low power levels (13 dBm).  相似文献   

15.
In this paper, we review a new piece of equipment that allows one to characterize the phase noise of crystal resonators using a phase bridge system with carrier suppression. This equipment allows one to measure the inherent phase stability of quartz crystal resonators in a passive circuit without the noise usually associated with an active oscillator. We achieved a system noise floor of approximately -150 dBc/Hz at 1 Hz and -160 dBc/Hz, at 10 Hz. A SPICE characterization of the carrier suppression system is given. An investigation of the phase modulation (PM) noise in 10 MHz BVA, SC-cut quartz crystal resonator pairs is presented.  相似文献   

16.
Ferroelectric capacitors made from Ba(1-0.5)Sr0.5TiO3 (BST) are applied as varactors in tunable, high-frequency circuit applications. In this context, a voltage-controlled oscillator (VCO) has been designed and implemented using discrete RF bipolar junction transistor (BJTs) and tunable ferroelectric capacitor. The designed VCO has a tuning range from 205 MHz to 216.3 MHz with a power dissipation of 5.1 mW. The measured phase noise is -90 dBc/Hz at 100 kHz and -140 dBc/Hz at 1 MHz offset.  相似文献   

17.
This paper presents state-of-the-art results on 1-GHz surface transverse wave (STW) oscillators running at extremely high loop power levels. The high-Q single-mode STW resonators used in these designs have an insertion loss of 3.6 dB, an unloaded Q of 8000, a residual PM noise of -142 dBc/Hz at a 1-Hz carrier offset, and operate at an incident power of up to +31 dBm in the loop. Other low-Q STW resonators and coupled resonator filters (CRF), with insertion losses in the 5-9 dB range, can conveniently handle power levels in excess of two Watts. These devices were incorporated into voltage controlled oscillators (VCO's) running from a 9.6-V dc source and provide an RF output power of +23 dBm at an RF/dc efficiency of 28%. Their tuning range was 750 kHz and the PM noise floor was -180 dBc/Hz. The oscillators, stabilized with the high-Q devices and using specially designed AB-class power amplifiers, delivered an output power of +29 dBm and exhibited a PM noise floor of -184 dBc/Hz and a 1-Hz phase noise level of -17 dBc/Hz. The 1-Hz phase noise level was improved to -33 dBc/Hz using a commercially available loop amplifier. In this case, the output power was +22 dBm. In all cases studied, the loop amplifier was found to be the factor limiting the close-to-carrier oscillator phase noise performance  相似文献   

18.
Optical Q factor measurements are performed on a whispering gallery mode (WGM) disk resonator using a microwave frequency domain approach instead of using an optical domain approach. An absence of hysteretic behavior and a better linearity are obtained when performing linewidth measurements by using a microwave modulation for scanning the resonances instead of the piezoelectric-based frequency tuning capability of the laser. The WGM resonator is then used to stabilize a microwave optoelectronic oscillator. The microwave output of this system generates a 12.48 GHz signal with -94 dBc/Hz phase noise at 10 kHz offset.  相似文献   

19.
We demonstrate regenerative divide-by-two (halver) circuits with very low phase modulation (PM) noise at input frequencies of 18.4 GHz and 39.8 GHz. The PM noise of the 18.4 to 9.2 GHz divider pair was L(10 Hz)=-134 dB below the carrier in a 1 Hz bandwidth (dBc/Hz) and L(10 MHz)=-166 dBc/Hz, and the PM noise of the 39.8 GHz to 19.9 GHz divider pair was L(10 Hz)=-122 dBc/Hz and L(10 MHz)=-167 dBc/Hz.  相似文献   

20.
In this paper, the electrical and noise performances of a 0.8 /spl mu/m silicon germanium (SiGe) transistor optimized for the design of low phase-noise circuits are described. A nonlinear model developed for the transistor and its use for the design of a low-phase noise C band sapphire resonator oscillator are also reported. The best measured phase noise (at ambient temperature) is -138 dBc/Hz at 1 kHz offset from a 4.85 GHz carrier frequency, with a loaded Q/sub L/ factor of 75,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号