首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural and electrical properties of InN/GaN multiple quantum wells, which were grown by metalorganic chemical vapor deposition, were characterized by transmission electron microscopy (TEM) and electroluminescence measurements. From the TEM micrographs, it was shown that the well layer was grown like a quantum dot. The well layer is expected to be the nano-size structures in the InN multiple quantum well layers. The multi-photon confocal laser scanning microscopy was used to investigate the optical properties of the light emitting diode (LED) structures with InN active layers. It was found that the two-photon excitation was possible in InN system. The pit density was measured by using the far-field optical technique. In the varied current conditions, the blue LED with the InN multiple quantum well structures did not have the wavelength shift. With this result, we can expect that the white LEDs with the InN multiple quantum well structures do not show the color temperature changes with the variations of applied currents.  相似文献   

2.
Sum-frequency generation from chiral bulk media holds the promise of a powerful tool in the investigation of biological as well as artificial materials containing optically active elements. Since this technique is based on a nonlinear optical effect, the high intensities of the illuminating light sources may induce spurious artifacts. Using simple conjugated chromophores, we demonstrate that multi-photon induced irreversible photolysis may be avoided while keeping undiminished levels of sum-frequency signals. In addition we show that the concurrent multi-photon induced luminescence may provide complementary means of imaging samples.  相似文献   

3.
简要回顾了量子关联成像的基本原理和发展历程,从量子光源和经典光源的角度详细介绍了量子关联成像在显微成像中的研究进展。做出了基于经典源的量子关联成像因易于实施、成本较低,在显微成像中更具应用前景的判断。  相似文献   

4.
We have analyzed the evolution of quantum operators in a three-wave mixing process by using the nonlinear polarization driven wave equations and linearization of the quantum operators. We have theoretically shown that a nondegenerate optical parametric amplifier can generate amplitude-squeezed light when operated in the backconversion regime. Furthermore, a nondegenerate optical parametric oscillator, where only the signal wave is resonant, is proved to generate amplitude-squeezed light when the pump intensity is above the value at which 100% photon conversion efficiency is achieved. The calculated limit for amplitude-squeezing in this case is 3 d B.  相似文献   

5.
A quantum analysis of the generalized polarization properties of multimode single photon states is presented. It is based on the optical field-strength probability distributions in such a way that generalized polarization is understood as a significant confinement of the probability distribution along certain regions of the multidimensional optical field-strength space. The analysis is addressed to multimode integrated waveguiding devices, such as N?×?N integrated directional couplers, whose modes fulfil a spatial modal orthogonality relationship. For that purpose a definition of the quantum generalized polarization degree in a N-dimensional space, based on the concept of distance to an unpolarized N-dimensional Gaussian distribution, is proposed. The generalized polarization degree of pure and mixture multimode single photon states and also of some multi-photon states such as coherent and chaotic ones, is evaluated and analyzed.  相似文献   

6.
Sevinc PC  Wang X  Wang Y  Zhang D  Meixner AJ  Lu HP 《Nano letters》2011,11(4):1490-1494
We have probed single surface states and the involved interfacial charge transfer coupling on the TiO(2) surface using confocal as well as tip-enhanced near-field topographic-spectroscopic imaging analysis on a niobium-doped rutile TiO(2)(110) surface. The confocal images excited with a radially polarized donut mode render ring-shaped excitation patterns typical for quantum systems with two perpendicular transition dipole moments. The tip-enhanced near-field optical images of single surface states are visualized by the strong exciton plasmon-polariton coupling localized at the subdomain boundaries with a spatial resolution of ~15 nm (far beyond the optical diffraction limit). We suggest that the abundant surface states in the doped TiO(2) generate excitons under laser excitation which are strongly coupled to the surface plasmon-polaritons of the Au tip. Moreover, the interfacial electronic molecule-substrate coupling has been characterized by probing the molecule-perturbed surface states distribution and the associated specific Raman vibrational modes. The imaging and characterization of the surface states and their distributions on TiO(2) surfaces at nanoscale are critically relevant to a deep understanding of interfacial electron transfer dynamics and energetics involving in solar energy conversion, photocatalysis, and mechanistic understanding of surface-enhanced Raman scattering spectroscopy.  相似文献   

7.
Atomic ensembles containing a large number of atoms have been proved to be an effective medium for quantum-state (quantum information) engineering and processing via their coupling with multi-photon light pulses. The general mechanism of this coupling, which involves continuous quantum variables for light and atoms, is described. The efficient quantum interface between light and atoms has led to the recent demonstration of an entangled state of two macroscopic atomic objects, more precisely two caesium gas samples. Based on this result, a proposal for teleportation of an entangled state of two atomic samples (entanglement swapping) is presented.  相似文献   

8.
Abstract

In our paper we consider the non-classical behaviour of both the Hermitian (observable) Stokes parameters of light and the phase difference of two modes that describe the quantum polarization states of optical field. To characterize the degree of polarization of light we introduce a new quantity taking into account the quantum properties of different quantum states of two orthogonally polarized modes. The problem of determination of the phase difference in two modes of optical field for the quantum polarization states of light is discussed. To describe in general such a quantum field we introduce two pairs of the phase operators: the phase angles for the Stokes parameters of light in a three-dimensional picture of the Poincaré sphere. We also consider a special type of the eight-port polarization interferometer (polarimeter) for simultaneous homodyne detection of both the Stokes parameters of light and the polarization phase operators and their fluctuations as well. Using an anisotropic (spatioperiodic) Kerr-like nonlinear medium associated with the polarization interferometer we could generate and also observe the polarization-squeezed phase states of light. The fluctuations in the phase difference between two orthogonally polarized modes for these non-classical states are less than the fluctuations for light in coherent state.  相似文献   

9.
We present an experimental realization of the first iteration in Grover's quantum algorithm using classical light and linear optical elements. The algorithm serves to find an entry marked by an oracle in an unstructured database. In our scheme, the quantum states encoding the database are represented by helical modes generated by means of a Spatial Light Modulator, while the marking corresponds to a π phase shift of the hidden mode. The optical implementation of Grover's algorithm then selectively amplifies the intensity of the marked mode such that it can be revealed by a modal decomposition. The core of the algorithm – a geometrical reflection of the point representing all database entries – is implemented in a single step independent of the size of the database. Moreover, we demonstrate experimentally that one iteration of the algorithm is enough to identify the marked entry, as a consequence of using classical states of light.  相似文献   

10.
Super-resolution optical imaging techniques can break the optical diffraction limit, thus providing unique opportunities to visualize the microscopic world at the nanoscale. Although near-field optical microscopy techniques have been proven to achieve significantly improved imaging resolution, most near-field approaches still suffer from a narrow field of view (FOV) or difficulty in obtaining wide-field images in real time, which may limit their widespread and diverse applications. Here, the authors experimentally demonstrate an optical microscope magnification and image enhancement approach by using a submillimeter-sized solid immersion lens (SIL) assembled by densely-packed 15 nm TiO2 nanoparticles through a silicone oil two-step dehydration method. This TiO2 nanoparticle-assembled SIL can achieve both high transparency and high refractive index, as well as sufficient mechanical strength and easy-to-handle size, thus providing a fast, wide-field, real-time, non-destructive, and low-cost solution for improving the quality of optical microscopic observation of a variety of samples, including nanomaterials, cancer cells, and living cells or bacteria under conventional optical microscopes. This study provides an attractive alternative to simplify the fabrication and applications of high-performance SILs.  相似文献   

11.
We investigate the utility of parity detection to achieve Heisenberg-limited phase estimation for optical interferometry. We consider the parity detection with several input states that have been shown to exhibit sub-shot-noise interferometry with their respective detection schemes. We show that with parity detection, all these states achieve the sub-shot-noise limited phase uncertainty. Thus making the parity detection a unified detection strategy for quantum optical metrology. We also consider quantum states that are a combination of a NOON state and a dual-Fock state, which gives a great deal of freedom in the preparation of the input state, and is found to surpass the shot-noise limit.  相似文献   

12.
Super high resolution for long-range imaging   总被引:1,自引:0,他引:1  
Aruga T  Li SW 《Applied optics》1999,38(13):2795-2799
A new optical system with a resolution that is superior to the resolution of the usual optical systems with diffraction limit is presented. We introduce a newly generated narrow light beam that propagates for a long range while almost maintaining its beam width and show that the beam width is narrower than that of the diffraction limit of normal optics. Thus a super high resolution is achieved for a long range, e.g., a range of a few kilometers, by the use of a 10-cm-diameter telescope. The high resolution for long-range imaging can be obtained by a Galilean telescope with a negative eyepiece that has a spherical aberration. We demonstrate theoretically high-resolution imaging by using simple objects and assuming a telescope 10 cm in diameter and a visible wavelength. A comparison of simulation results by the conventional optical system and by the special optical system clearly shows the superiority of the new system.  相似文献   

13.
We are interested in studying the entanglement of an array of superconducting phase quantum circuits and external magnetic fluxes. It is shown that in a four-level cascade type quantum system, the degree of entanglement increases by generation of fourth microwave pulse, in multi-photon resonance condition. We achieve the maximal entanglement induced via four-wave mixing in our model. Moreover, it is demonstrated that the population distribution of the dressed states approaches to be uniform as the degree of entanglement becomes maximum. We can control the entanglement of the composite system by changing amplitudes of the applied magnetic fluxes. Our results can be used in quantum information processing via superconducting quantum circuits.  相似文献   

14.
鄢波  彭泽洋  吕斌  刘薇 《无机材料学报》2017,32(12):1321-1326
实验研究了以3-巯基丙酸为配体合成的水溶性CdTe量子点经过非偏振光与圆偏振光照射处理后, 量子点的再生长变化规律。采用光致发光谱、紫外-可见吸收光谱、透射电子显微镜与X射线衍射等表征手段分析表明: 非偏振光会促进CdTe量子点的光氧化, 导致量子点尺寸缩小, 荧光发光峰位蓝移, 且发光效率降低; 而圆偏振光增强了配体的光氧化, 在量子点表面形成CdS层, 导致量子点尺寸进一步增大, 荧光发光峰红移, 且发光效率提升。进一步讨论了CdTe量子点与配体之间的键合作用, 相关光化学反应机制及其对量子点光致发光性质的影响。  相似文献   

15.
We demonstrate microscopic time-resolved two-dimensional (2D) imaging that is based on a femtosecond amplifying optical Kerr gate (fs-amp OKG). The contribution of the optical nonlinear effects to the transverse imaging performance and the limit of the transverse resolving power are investigated. The optical Kerr effect in the excited state with amplification, used in the fs-amp OKG, does not deteriorate the quality of the time-resolved image at transverse resolutions up to at least 5.5 microm. We obtain a femtosecond-time-resolved 2D image of a microscopic object with a transverse resolution of 1.7 microm.  相似文献   

16.
Abstract

Low-noise, efficient, phase-sensitive time-domain optical detection is essential for foundational tests of quantum physics based on optical quantum states and the realization of numerous applications ranging from quantum key distribution to coherent classical telecommunications. Stability, bandwidth, efficiency, and signal-to-noise ratio are crucial performance parameters for effective detector operation. Here we present a high-bandwidth, low-noise, ultra-stable time-domain coherent measurement scheme based on balanced homodyne detection ideally suited to characterization of quantum and classical light fields in well-defined ultrashort optical pulse modes.  相似文献   

17.
Abstract

Quantum-noise reduction to levels nearly 1 dB below the standard quantum limit are reported for light frequencies near an atomic-sodium resonance. This squeezed light is generated in an optical confocal cavity using four-wave mixing due to the atomic-sodium resonance nonlinearity. Squeezed light exits the cavity through a partially reflecting mirror and is detected outside the cavity with a balanced homodyne detector. Experimental details are described for minimizing losses in the atomic beam and detection apparatus. Frequency jitter due to the pump laser also plays a key role in the limits for noise reduction. A wideband phenomenological model is used to analyse the results. Good agreement between this model and the experimental results is obtained. A full quantum model also agrees with the results and predicts even larger squeezing at higher pump intensities. Prospects for achieving this larger-noise-reduction regime are good.  相似文献   

18.
We present measurements of the position resolution of a read-out system, which slow that the limit imposed by quantum partition noise does not exist at the previously expected levels. We show that this result has important implications in the field of X-ray and optical imaging, especially where high positional accuracy is required.  相似文献   

19.
Abstract

We consider a generic interferometric set-up as a device to record interference fringes. The system is characterized by two variable transmission beam-splitters. A coherent signal is measured and its noise properties are manipulated by mixing in a squeezed vacuum through the second input port. The performance is optimized either by minimizing the noise at the dark and the light fringes, or alternatively by keeping it below the standard quantum limit for all phase angles observed. The analysis is carried out using a quantum optical network formalism generalizing the classical Jones calculus. The results obtained are interpreted and explained using the Wigner function for the output signals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号