首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Debye–Wolf electromagnetic diffraction formula is now routinely used to describe focusing by high numerical aperture optical systems. In this paper we obtain the eigenfunction representation of the integrals of the Debye–Wolf formula in terms of Bessel and circular prolate spheroidal functions. This result offers considerable analytical simplification to the Debye–Wolf formula and it could also be used as a mathematical basis for its inversion. In addition, we show that numerical evaluation of the Debye–Wolf formula, based on the eigenfunction representation of its integrals, is faster and more efficient than direct numerical integration. Our work has applications in a large variety of areas, such as polarised light microscopy, point spread function engineering and micromachining.  相似文献   

2.
Abstract

We present a new computation scheme for the integral expressions describing the contributions of single aberrations to the diffraction integral in the context of an extended Nijboer-Zernike approach. Such a scheme, in the form of a power series involving the defocus parameter with coefficients given explicitly in terms of Bessel functions and binomial coefficients, was presented recently by the authors with satisfactory results for small-to-medium-large defocus values. The new scheme amounts to systemizing the procedure proposed by Nijboer in which the appropriate linearization of products of Zernike polynomials is achieved by using certain results of the modern theory of orthogonal polynomials. It can be used to compute point-spread functions of general optical systems in the presence of arbitrary lens transmission and lens aberration functions and the scheme provides accurate data for any, small or large, defocus value and at any spatial point in one and the same format. The cases with high numerical aperture, requiring a vectorial approach, are equally well handled. The resulting infinite series expressions for these point-spread functions, involving products of Bessel functions, can be shown to be practically immune to loss of digits. In this respect, because of its virtually unlimited defocus range, the scheme is particularly valuable in replacing numerical Fourier transform methods when the defocused pupil functions require intolerably high sampling densities.  相似文献   

3.
Abstract

Using vector diffraction theory, we have addressed the issue of finding the pupil function when the rate of decay of the intensity in the vicinity of the Gaussian focus along the optical axis is prescribed. The problem posed here reduces to a Fredholm integral equation, which is then solved to obtain the pupil function. We show that the diffraction integrals, as formulated by Wolf, are invariant if they are expressed in terms of the zth (the direction of the optical axis) component of the unit normal to the aberrated wave front. This makes it possible to obtain the pupil function from the solution of the Fredholm integral equation. We present results for lenses with high numerical aperture and show that the depth of focus is significantly increased without any loss of transmitted energy. Results further indicate that the FWHM of the primary lobe is significantly narrower than the clear aperture.  相似文献   

4.
A first approach of a modal method by Gegenbauer polynomial expansion (MMGE1) is presented for a plane wave diffraction by a lamellar grating. Modal methods are among the most popular methods that are used to solve the problem of lamellar gratings. They consist in describing the electromagnetic field in terms of eigenfunctions and eigenvalues of an operator. In the particular case of the Fourier modal method (FMM), the eigenfunctions are approximated by a finite Fourier sum, and this approximation can lead to a poor convergence of the FMM. The Wilbraham-Gibbs phenomenon may be one of the reasons for this poor convergence. Thus, it is interesting to investigate other basis functions that may represent the fields more accurately. The approach proposed in this paper consists in subdividing the pattern in homogeneous layers, according to the periodicity axis. The field is expanded, in each layer, on the basis of Gegenbauer's polynomials. Boundary conditions are rigorously written between adjacent layers; thus, an eigenvalue equation is obtained. The approach presented in this paper proves to describe the fields accurately. Finally, it is demonstrated that the results obtained with the MMGE1 are more accurate than several existing modal methods, such as the classical and the parametric FMM.  相似文献   

5.
In this paper weakly equilibrated basis functions (EqBFs) are introduced for the development of a boundary point method. This study is the extension of the one in (Int. J. Numer. Methods Engng. 81 (2010) 971–1018) using exponential basis functions (EBFs) which are available just for partial differential equations (PDEs) with constant coefficients. Here the EqBFs are evaluated numerically to solve more general PDEs with non-constant coefficients. The EqBFs are found through weighted residual integrals defined over a fictitious domain embedding the main domain. A series of Chebyshev polynomials are used for the construction of the basis functions. By properly choosing the weight functions as the product of two unidirectional functions, here with Gaussian distribution, the main 2D integrals are written as the product of the simpler 1D ones. The results of the integrals can be stored for further use; however in some particular cases the EqBFs may be stored as a set of library functions. The results may also be found useful for those who are interested in residual-free functions in other numerical methods. For the verification, we discuss on the validity of the solution through an essential and comprehensive test procedure followed by several numerical examples.  相似文献   

6.
Abstract

Procedures for the fast and accurate numerical computation of Fresnel diffraction integrals are developed on the basis of geometrical properties of the Cornu spiral. The methods proposed allow the highly oscillatory integrals in Fresnel diffraction to be approximated by means of three simpler integrals and permit the calculation of these final integrals using analytical formulae.  相似文献   

7.
In this paper, a new approach is presented for the numerical evaluation of arbitrary singular domain integrals based on the radial integration method. The transformation from domain integrals to boundary integrals and the analytical elimination of singularities can be accomplished by expressing the non-singular part of the integration kernels as polynomials of the distance r and using the intrinsic features of the radial integral. In the proposed method, singularities involved in the domain integrals are explicitly transformed to the boundary integrals, so no singularities exist at internal points. Some numerical examples are provided to verify the correctness and robustness of the presented method.  相似文献   

8.
In this paper, elliptical cracks and rectangular cracks embedded in a three-dimensional infinite transversely isotropic piezoelectric solid are analyzed under combined mechanical tension and electric fields. The hypersingular integral equation method is used to solve the mentioned problems. The unknown function in the hypersingular integral equations is approximated with a product of the fundamental density function and polynomials. The hypersingular integrals can be numerically evaluated by using a method of Taylor series expansion. Therefore, the hypersingular integral equations for the crack problems can be solved immediately. Finally, numerical examples of the stress and electric displacement intensity factors as well as the energy release rates for these crack configurations are presented. The numerical results demonstrate the present approach to be very efficient.  相似文献   

9.
In this paper, a new and simple boundary‐domain integral equation is presented for heat conduction problems with heat generation and non‐homogeneous thermal conductivity. Since a normalized temperature is introduced to formulate the integral equation, temperature gradients are not involved in the domain integrals. The Green's function for the Laplace equation is used and, therefore, the derived integral equation has a unified form for different heat generations and thermal conductivities. The arising domain integrals are converted into equivalent boundary integrals using the radial integration method (RIM) by expressing the normalized temperature using a series of basis functions and polynomials in global co‐ordinates. Numerical examples are given to demonstrate the robustness of the presented method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This paper focuses on unresolved or poorly documented issues pertaining to Fresnel’s scalar diffraction theory and its modifications. In Sec. 2 it is pointed out that all thermal sources used in practice are finite in size and errors can result from insufficient coherence of the optical field. A quarter-wave criterion is applied to show how such errors can be avoided by placing the source at a large distance from the aperture plane, and it is found that in many cases it may be necessary to use collimated light as on the source side of a Fraunhofer experiment. If these precautions are not taken the theory of partial coherence may have to be used for the computations.In Sec. 3 it is recalled that for near-zone computations the Kirchhoff or Rayleigh-Sommerfeld integrals are applicable, but fail to correctly describe the energy flux across the aperture plane because they are not continuously differentiable with respect to the assumed geometrical field on the source side. This is remedied by formulating an improved theory in which the field on either side of a semi-reflecting screen is expressed as the superposition of mutually incoherent components which propagate in the opposite directions of the incident and reflected light.These components are defined as linear combinations of the Rayleigh-Sommerfeld integrals, so that they are rigorous solutions of the wave equation as well as continuously differentiable in the aperture plane. Algorithms for using the new theory for computing the diffraction patterns of circular apertures and slits at arbitrary distances z from either side of the aperture (down to z = ± 0.0003 λ) are presented, and numerical examples of the results are given. These results show that the incident geometrical field is modulated by diffraction before it reaches the aperture plane while the reflected field is spilled into the dark space. At distances from the aperture which are large compared to the wavelength λ these field expressions are reduced to the usual ones specified by Fresnel’s theory. In the specific case of a diffracting half plane the numerical results obtained were practically the same as those given by Sommerfeld’s rigorous theory.The modified theory developed in this paper is based on the explicit assumption that the scalar theory of light cannot explain plolarization effects. This premise is justified in Sec. 4, where it is shown that previous attempts to do so have produced dubious results.  相似文献   

11.
In this paper, systematic approaches to determine the polynomial stress functions for anisotropic plane problems are presented based on the Lekhnitskii’s theory of anisotropic elasticity. It is demonstrated that, for plane problems, there are at most four independent polynomials for arbitrary n-th order homogeneous polynomial stress functions: three independent polynomials for n equal to two and four for n greater than or equal to three. General expressions for such polynomial stress functions are derived in explicit forms. Unlike the isotropic case, the polynomials for anisotropic problems are functions of material constants, because the elastic constants cannot be eliminated in the governing equation for general anisotropic cases. The polynomials can be used as analytical trial functions to develop the new 8-node hybrid element (ATF-Q8) for anisotropic problems. This ATF-Q8 element demonstrated excellent performance in comparison with traditional numerical methods through several testing examples.  相似文献   

12.
Abstract

We apply a mode expansion technique to the three-dimensional vectorial diffraction problem of an electromagnetic field that is incident on a perfectly conducting, metallic disc containing a pattern of rectangular pits. The mode expansion technique reduces the three-dimensional diffraction problem to a two-dimensional numerical problem. Furthermore, by choosing a particular numerical discretization, the a priori unknown amplitudes of the propagating and evanescent scattered plane waves in the half space above the metallic plate can be eliminated from the system of equations. The relatively small remaining system of equations for the amplitudes of the propagating and evanescent modes inside the pits, can be solved very rapidly. Some first results are presented. Furthermore, the application of the scanning of an optical beam by a pit structure on a metallic optical disc is discussed.  相似文献   

13.
The superposition-related problems which arise from the non-symmetric extension at a constant rate of a plane crack from a small flaw by the removal of normal and shear tractions along the crack plane is treated. It is assumed that these tractions are, or can be approximated by, polynomials in the spatial and time variables in the crack plane. Because any more general polynomial can be obtained by proper combination, attention is focused on polynomials homogeneous of degree n ? 0 which have n + 1 terms with arbitrary constant coefficients. Expressions for the stresses and displacements are readily obtained as single integrals of analytic functions and observations concerning the dynamic intensity factors at the crack edges are made. Certain previously obtained results follow as special cases of the present work.  相似文献   

14.
We assess the validity of an extended Nijboer-Zernike approach [J. Opt. Soc. Am. A 19, 849 (2002)], based on ecently found Bessel-series representations of diffraction integrals comprising an arbitrary aberration and a defocus part, for the computation of optical point-spread functions of circular, aberrated optical systems. These new series representations yield a flexible means to compute optical point-spread functions, both accurately and efficiently, under defocus and aberration conditions that seem to cover almost all cases of practical interest. Because of the analytical nature of the formulas, there are no discretization effects limiting the accuracy, as opposed to the more commonly used numerical packages based on strictly numerical integration methods. Instead, we have an easily managed criterion, expressed in the number of terms to be included in the Bessel-series representations, guaranteeing the desired accuracy. For this reason, the analytical method can also serve as a calibration tool for the numerically based methods. The analysis is not limited to pointlike objects but can also be used for extended objects under various illumination conditions. The calculation schemes are simple and permit one to trace the relative strength of the various interfering complex-amplitude terms that contribute to the final image intensity function.  相似文献   

15.
Evaluation of hydrodynamic coefficients and loads on submerged or floating bodies is of great significance in designing these structures. Some special regular-shaped geometries such as those of cylindrical (circular, elliptic) and spherical (hemisphere, sphere, spheroid) structures are usually considered to obtain analytical solutions to wave diffraction and radiation problems. The work presented here is the result of water-wave interaction with submerged spheres. Analytical expressions for various hydrodynamic coefficients and loads due to the diffraction of water waves by a submerged sphere are obtained. The exciting force components due to surge and heave motions are derived by solving the diffraction problem. Theory of multipole expansions is used to express the velocity potentials in terms of an infinite series of associated Legendre polynomials with unknown coefficients and the orthogonality of the polynomials is utilized to simplify the expressions. Since the infinite series appearing in various expressions have excellent truncation properties, they are evaluated by considering only a finite number of terms. Gaussian quadrature is used to evaluate the integrals. Numerical estimates for the analytical expressions for the hydrodynamic coefficients and loads are presented for various depth to radius ratios. Consideration of more values for depth makes it easy to compare the results with those available. The results obtained match closely with those obtained earlier by Wang and Wu and their coworkers  相似文献   

16.
In this paper, a new boundary element method without internal cells is presented for solving viscous flow problems, based on the radial integration method (RIM) which can transform any domain integrals into boundary integrals. Due to the presence of body forces, pressure term and the non-linearity of the convective terms in Navier–Stokes equations, some domain integrals appear in the derived velocity and pressure boundary-domain integral equations. The body forces induced domain integrals are directly transformed into equivalent boundary integrals using RIM. For other domain integrals including unknown quantities (velocity product and pressure), the transformation to the boundary is accomplished by approximating the unknown quantities with the compactly supported fourth-order spline radial basis functions combined with polynomials in global coordinates. Two numerical examples are given to demonstrate the validity and effectiveness of the proposed method.  相似文献   

17.
In this study, a numerical method based on solenoidal basis functions, for the simulation of incompressible flow through a circular–cylindrical pipe, is presented. The solenoidal bases utilized in the study are formulated using the Legendre polynomials. Legendre polynomials are favorable, both for the form of the basis functions and for the inner product integrals arising from the Galerkin-type projection used. The projection is performed onto the dual solenoidal bases, eliminating the pressure variable, simplifying the numerical approach to the problem. The success of the scheme in calculating turbulence statistics and its energy conserving properties is investigated. The generated numerical method is also tested by simulating the effect of drag reduction due to spanwise wall oscillations.  相似文献   

18.
19.
An analytical method for calculating dynamic stress intensity factors in the mixed mode (combination of opening and sliding modes) using complex functions theory is presented. The crack is in infinite medium and subjected to the plane harmonic waves. The basis of the method is grounded on solving the two‐dimensional wave equations in the frequency domain and complex plane using mapping technique. In this domain, solution of the resulting partial differential equations is found in the series of the Hankel functions with unknown coefficients. Applying the boundary conditions of the crack, these coefficients are calculated. After solving the wave equations, the stress and displacement fields, also the J‐integrals are obtained. Finally using the J‐integrals, dynamic stress intensity factors are calculated. Numerical results including the values of dynamic stress intensity factors for a crack in an infinite medium subjected to the dilatation and shear harmonic waves are presented.  相似文献   

20.
In the Boundary Element Method (BEM) the density functions are approximated by interpolation functions which are chosen to satisfy appropriate continuity requirements. The error of approximation inside an element depends upon the location of the collocation points that are used in constructing the interpolation functions. The location of collocation points also affects the nodal values of the density function and, hence, the total error in the analysis if boundary conditions are satisfied in a collocation sense. In this paper, we minimize the error inside the element using the L1 norm to obtain the optimum location of collocation points. Results show that irrespective of the continuity requirement at the element end, the location of collocation points computed by the algorithm presented in this paper results in an error that is less than the error corresponding to uniformly spaced collocation points. Results for optimum location of collocation points and the average error are presented for Lagrange polynomials up to order fifteen and for Hermite polynomials that ensure continuity up to the seventh order of derivative at the element end. The information of the optimum location of interpolation points for Lagrange and Hermite polynomials should be useful to other researchers in BEM who could incorporate it into their current programs without making significant changes that would be needed for incorporating the algorithm. The algorithm presented is independent of the BEM application in two-dimensions, provided that the density functions are approximated by polynomials and is applicable to direct and indirect formulations. Two numerical examples show the application of the algorithm to an elastostatic problem in which one boundary is represented by integrals of the Direct BEM while the other boundary by the Indirect BEM and a fracture mechanics problem by Direct method in which the crack is represented by displacement discontinuity density function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号