首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the rapid development of on-chip optical interconnects and optical computing in the past decade, silicon-based integrated devices for monolithic and hybrid optoelectronic integration have attracted wide attention. Due to its narrow pseudo-direct gap behavior and compatibility with Si technology, epitaxial Ge-on-Si has become a significant material for optoelectronic device applications. In this paper, we describe recent research progress on heteroepitaxy of Ge flat films and self-assembled Ge quantum dots on Si. For film growth, methods of strain modification and lattice mismatch relief are summarized, while for dot growth, key process parameters and their effects on the dot density, dot morphology and dot position are reviewed. The results indicate that epitaxial Ge-on-Si materials will play a bigger role in silicon photonics.  相似文献   

2.
This review addresses the use of silk protein as a sustainable material in optics and photonics, electronics and optoelectronic applications. These options represent additional developments for this technology platform that compound the broad utility and impact of this material for medical needs that have been recently described in the literature. The favorable properties of the material certainly make a favorable case for the use of silk, yet serve as a broad inspiration to further develop biological foundries for both the synthesis and processing of Nature's materials for technological applications.  相似文献   

3.
Generally, GaN-based devices are grown on silicon carbide or sapphire substrates. But these substrates are costly and insulating in nature and also are not available in large diameter. Silicon can meet the requirements for a low cost and conducting substrate and will enable integration of optoelectronic or high power electronic devices with Si based electronics. But the main problem that hinders the rapid development of GaN devices based on silicon is the thermal mismatch of GaN and Si, which generates cracks. In 1998, the first MBE grown GaN based LED on Si was made and now the quality of material grown on silicon is comparable to that on sapphire substrate. It is only a question of time before Si based GaN devices appear on the market. This article is a review of the latest developments in GaN based devices on silicon.  相似文献   

4.
Silicon is the “veteran” semiconductor in the management of electrons. The recent quest for optoelectronic and photonic materials suggests that new architectures of silicon structured over multiple length scales may still be the optimum material for the transition from electron‐based to photon‐basped computers and communication systems. This Research News article is focussed on recent research accomplishments in fabrication and self‐assembly methods of shaping elemental silicon over nanometer to micrometer length scales for applications in electronics, optoelectronics, and photonics.  相似文献   

5.
Si photonics has attracted much interest over the last decade as it allows integration of photonic and electronic devices on a small Si chip, providing high-capacity, energy-efficient, and cost-effective optical interconnects. Active optical cables based on Si photonics are now commercially available for rack-to-rack interconnects in supercomputers and data centers. Shorter reach optical interconnects, i.e., inter- and intra-chip optical interconnects, have been studied as the next challenge for higher speed computing. Science and technology of advanced materials is essential for rapid development in this field, and therefore it is very appropriate to publish this focus issue in STAM.

This focus issue introduces state-of-the-art material and device technologies in Si photonics. The topics cover not only technologies for the optical interconnects but also optical sensing as a novel application.

We are grateful to the authors who contributed to this focus issue, and hope that it will help researchers understand the frontiers of Si photonics, stimulating novel concepts in material and device technologies, as well as novel developments in and applications of Si photonics.  相似文献   


6.
Epitaxial lateral overgrowth (ELOG) technology is demonstrated as a viable technology to realize monolithic integration of III-Vs on silicon. As an alternative to wafer-to-wafer bonding and die-to-wafer bonding, ELOG provides an attractive platform for fabricating discrete and integrated components in high volume at low cost. A possible route for monolithic integration of III–Vs on silicon for silicon photonics is exemplified by the case of a monolithic evanescently coupled silicon laser (MECSL) by combining InP on Si/SiO2 through ELOG. Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. The structural design of a monolithic evanescently coupled silicon laser (MECSL) and its thermal resistivity are established through simulations. Material studies to realize the above laser through ELOG are undertaken by studying appropriate ELOG pattern designs to achieve InP on narrow regions of silicon. We show that defect-free InP can be obtained on SiO2 as the first step which paves the way for realizing active photonic devices on Si/SiO2 waveguides, e.g. an MECSL.  相似文献   

7.
Wu D  Jiang Y  Li S  Li F  Li J  Lan X  Zhang Y  Wu C  Luo L  Jie J 《Nanotechnology》2011,22(40):405201
Silicon based optoelectronic integration is restricted by its poor optoelectronic properties arising from the indirect band structure. Here, by combining silicon with another promising optoelectronic material, the CdS nanoribbon (NR), devices with heterojunction structure were constructed. The CdS NRs were also doped with gallium to improve their n-type conductivity. A host of nano-optoelectronic devices, including light emitting diodes, photovoltaic devices, and photodetectors, were successfully constructed on the basis of the CdS:Ga NR/Si heterojunctions. They all exhibited excellent device performances as regards high stability, high efficiency, and fast response speed. It is expected that the CdS NR/Si heterojunctions will have great potential for future applications of Si based optoelectronic integration.  相似文献   

8.
Xiong C  Pernice WH  Tang HX 《Nano letters》2012,12(7):3562-3568
Photonic miniaturization requires seamless integration of linear and nonlinear optical components to achieve passive and active functions simultaneously. Among the available material systems, silicon photonics holds immense promise for optical signal processing and on-chip optical networks. However, silicon is limited to wavelengths above 1.1 μm and does not provide the desired lowest order optical nonlinearity for active signal processing. Here we report the integration of aluminum nitride (AlN) films on silicon substrates to bring active functionalities to chip-scale photonics. Using CMOS-compatible sputtered thin films we fabricate AlN-on-insulator waveguides that exhibit low propagation loss (0.6 dB/cm). Exploiting AlN's inherent Pockels effect we demonstrate electro-optic modulation up to 4.5 Gb/s with very low energy consumption (down to 10 fJ/bit). The ultrawide transparency window of AlN devices also enables high speed modulation at visible wavelengths. Our low cost, wideband, carrier-free photonic circuits hold promise for ultralow power and high-speed signal processing at the microprocessor chip level.  相似文献   

9.
We introduce a design concept of optical waveguides characterized by a practical and reproducible process based on preferential etching of crystalline silicon substrates. Low-loss waveguides, spot-size converters, and power dividers have been obtained with polymers. We have also aligned liquid crystals in the waveguides and demonstrated guided propagation. Therefore this technology is a suitable platform for soft-matter photonics and heterogeneous integration.  相似文献   

10.
In the growing list of 2D semiconductors as potential successors to silicon in future devices, metal‐halide perovskites have recently joined the family. Unlike other conversional 2D covalent semiconductors such as graphene, transition metal dichalcogenides, black phosphorus, etc., 2D perovskites are ionic materials, affording many distinct properties of their own, including high photoluminescence quantum efficiency, balanced large exciton binding energy and oscillator strength, and long carrier diffusion length. These unique properties make 2D perovskites potential candidates for optoelectronic and photonic devices such as solar cells, light‐emitting diodes, photodetectors, nanolasers, waveguides, modulators, and so on, which represent a relatively new but exciting and rapidly expanding area of research. In this Review, the recent advances in emerging 2D metal‐halide perovskites and their applications in the fields of optoelectronics and photonics are summarized and insights into the future direction of these fields are offered.  相似文献   

11.
Excitation of local field enhancement on silicon nanowires   总被引:1,自引:0,他引:1  
The interaction between light and reduced-dimensionality silicon attracts significant interest due to the possibilities of designing nanoscaled optical devices, highly cost-efficient solar cells, and ultracompact optoelectronic systems that are integrated with standard microelectronic technology. We demonstrate that Si nanowires (SiNWs) possessing metal-nanocluster coatings support a multiplicatively enhanced near-field light-matter interaction. Raman scattering from chemisorbed probing molecules provides a quantitative measure of the strength of this enhanced coupling. An enhancement factor of 2 orders of magnitude larger than that for the surface plasmon resonance alone (without the SiNWs) along with the attractive properties of SiNWs, including synthetic controllability of shape, indicates that these nanostructures may be an attractive and versatile material platform for the design of nanoscaled optical and optoelectronic circuits.  相似文献   

12.
Ultrathin films of single‐walled carbon nanotubes (SWNTs) represent an attractive, emerging class of material, with properties that can approach the exceptional electrical, mechanical, and optical characteristics of individual SWNTs, in a format that, unlike isolated tubes, is readily suitable for scalable integration into devices. These features suggest the potential for realistic applications as conducting or semiconducting layers in diverse types of electronic, optoelectronic and sensor systems. This article reviews recent advances in assembly techniques for forming such films, modeling and experimental work that reveals their collective properties, and engineering aspects of implementation in sensors and in electronic devices and circuits with various levels of complexity. A concluding discussion provides some perspectives on possibilities for future work in fundamental and applied aspects.  相似文献   

13.
With recent progress in the design of materials and mechanics, opportunities have arisen to improve optoelectronic devices, circuits, and systems in curved, flexible, stretchable, and biocompatible formats, thereby enabling integration of customized optoelectronic devices and biological systems. Here, the core material technologies of biointegrated optoelectronic platforms are discussed. An overview of the design and fabrication methods to form semiconductor materials and devices in flexible and stretchable formats is presented, strategies incorporating various heterogeneous substrates, interfaces, and encapsulants are discussed, and their applications in biomimetic, wearable, and implantable systems are highlighted.  相似文献   

14.
Hydrogenated amorphous silicon oxide (a-SiO:H) films prepared by rf plasma enhanced chemical vapour deposition (PECVD) method have recently proved their potential as a photovoltaic material for the fabrication of high efficiency multijunction amorphous silicon solar cells. If deposited under proper conditions, it may be a better wide band gap material than the normally used a-SiC : H. In this paper we report the improvements achieved over the previously reported results. The films have been characterized in detail in terms of their optoelectronic properties, structural characteristics, defect density and light induced degradation.  相似文献   

15.
2D materials have attracted considerable attention due to their exciting optical and electronic properties, and demonstrate immense potential for next‐generation solar cells and other optoelectronic devices. With the scaling trends in photovoltaics moving toward thinner active materials, the atomically thin bodies and high flexibility of 2D materials make them the obvious choice for integration with future‐generation photovoltaic technology. Not only can graphene, with its high transparency and conductivity, be used as the electrodes in solar cells, but also its ambipolar electrical transport enables it to serve as both the anode and the cathode. 2D materials beyond graphene, such as transition‐metal dichalcogenides, are direct‐bandgap semiconductors at the monolayer level, and they can be used as the active layer in ultrathin flexible solar cells. However, since no 2D material has been featured in the roadmap of standard photovoltaic technologies, a proper synergy is still lacking between the recently growing 2D community and the conventional solar community. A comprehensive review on the current state‐of‐the‐art of 2D‐materials‐based solar photovoltaics is presented here so that the recent advances of 2D materials for solar cells can be employed for formulating the future roadmap of various photovoltaic technologies.  相似文献   

16.
离子注入技术与硅基发光材料   总被引:8,自引:0,他引:8  
硅基发光材料是未来光电子集成的基础材料。离子注入技术在琪发光材料的研究与开发中有极重要的作用。多孔硅的发现是硅基发光材料的一项重大进展。  相似文献   

17.
Crystalline silicon forms the basis of just about all computing technologies on the planet, in the form of microelectronics. An enormous amount of research infrastructure and knowledge has been developed over the past half-century to construct complex functional microelectronic structures in silicon. As a result, it is highly probable that silicon will remain central to computing and related technologies as a platform for integration of, for instance, molecular electronics, sensing elements and micro- and nanoelectromechanical systems.Porous nanocrystalline silicon is a fascinating variant of the same single crystal silicon wafers used to make computer chips. Its synthesis, a straightforward electrochemical, chemical or photochemical etch, is compatible with existing silicon-based fabrication techniques. Porous silicon literally adds an entirely new dimension to the realm of silicon-based technologies as it has a complex, three-dimensional architecture made up of silicon nanoparticles, nanowires, and channel structures. The intrinsic material is photoluminescent at room temperature in the visible region due to quantum confinement effects, and thus provides an optical element to electronic applications.Our group has been developing new organic surface reactions on porous and nanocrystalline silicon to tailor it for a myriad of applications, including molecular electronics and sensing. Integration of organic and biological molecules with porous silicon is critical to harness the properties of this material. The construction and use of complex, hierarchical molecular synthetic strategies on porous silicon will be described.  相似文献   

18.
Optical components made fully or partially from reconfigurable, stimuli‐responsive, soft solids or fluids—collectively referred to as soft photonics—are poised to form the platform for tunable optical devices with unprecedented functionality and performance characteristics. Currently, however, soft solid and fluid material systems still represent an underutilized class of materials in the optical engineers' toolbox. This is in part due to challenges in fabrication, integration, and structural control on the nano‐ and microscale associated with the application of soft components in optics. These challenges might be addressed with the help of a resourceful ally: nature. Organisms from many different phyla have evolved an impressive arsenal of light manipulation strategies that rely on the ability to generate and dynamically reconfigure hierarchically structured, complex optical material designs, often involving soft or fluid components. A comprehensive understanding of design concepts, structure formation principles, material integration, and control mechanisms employed in biological photonic systems will allow this study to challenge current paradigms in optical technology. This review provides an overview of recent developments in the fields of soft photonics and biologically inspired optics, emphasizes the ties between the two fields, and outlines future opportunities that result from advancements in soft and bioinspired photonics.  相似文献   

19.
Transient forms of electronics, systems that disintegrate, dissolve, resorb, or sublime in a controlled manner after a well‐defined operating lifetime, are of interest for applications in hardware secure technologies, temporary biomedical implants, “green” consumer devices and other areas that cannot be addressed with conventional approaches. Broad sets of materials now exist for a range of transient electronic components, including transistors, diodes, antennas, sensors, and even batteries. This work reports the first examples of transient light‐emitting diodes (LEDs) that can completely dissolve in aqueous solutions to biologically and environmentally benign end products. Thin films of highly textured ZnO and polycrystalline Mo serve as semiconductors for light generation and conductors for transparent electrodes, respectively. The emitted light spans a range of visible wavelengths, where nanomembranes of monocrystalline silicon can serve as transient filters to yield red, green, and blue LEDs. Detailed characterization of the material chemistries and morphologies of the constituent layers, assessments of their performance properties, and studies of their dissolution processes define the underlying aspects. These results establish an electroluminescent light source technology for unique classes of optoelectronic systems that vanish into benign forms when exposed to aqueous conditions in the environment or in living organisms.  相似文献   

20.
与标准集成电路工艺兼容的硅基光学器件研究   总被引:1,自引:0,他引:1  
着重介绍了与标准集成电路工艺兼容的硅基光学器件的最新研究进展,包括硅基光发射器、硅基光波导和调制器件、硅基光电探测器和接收机以及硅基光电子集成回路的工作原理、制作工艺和集成技术.与标准集成电路工艺兼容的硅基光电子集成回路能有效地解决电互连芯片内部串扰、带宽和能耗等问题,并能够充分利用现有成熟的集成电路工艺,实现大规模生产,具有广阔的实用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号