首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Abstract

We investigate both codirectional and contradirectional nonlinear couplers composed of two nonlinear waveguides operating by second-harmonic generation. We take into account possible mismatches inside the waveguides and between them. We calculate the photon number distribution, its factorial moments, quadrature and integrated intensity variances and quadrature uncertainty product taking into account the effects of transmission of light between waveguides. Incident beams are assumed to be coherent, squeezed and mixed with external noise. Second-harmonic modes are assumed to be pumped with strong coherent beams. We show that non-classical behaviour of beams generated by the nonlinear waveguides can be transferred between them and controlled by linear and nonlinear mismatches. In the contradirectional regime of propagation, asymptotic non-classical states can be generated.  相似文献   

2.
Abstract

Using the approximation of small fluctuations around a stationary solution, photon statistics and quadrature variances are derived in stimulated Raman and hyper-Raman scattering including the coupling of pumping, Stokes, anti-Stokes and phonon modes. The depletion of pump light is included. Compared to Raman scattering, additional regimes to generate anti-bunched, sub-Poisson and squeezed light were found caused by self-interaction of the pump mode. It was possible to include effects of nonlinear dynamics, initial squeezing of radiation and phonon system, external noise and losses.  相似文献   

3.
Abstract

We present various schemes for measuring the quantum state of a single mode of the electromagnetic field. These involve measuring the photon statistics for the mode before and after an interaction with either one or two two-level atoms. The photon statistics conditioned on the final state of the atoms, for two choices of the initial set of atomic states, along with the initial photon statistics, may be used to calculate the complete quantum state in a simple manner. Alternatively, when one atom is used, two unconditioned sets of photon statistics, each after interaction with a single atom in different initial states, along with the initial photon statistics may be used to calculate the initial state in a simple manner. When the cavity is allowed to interact with just one atom, only pure cavity states which do not contain zeros in the photon distribution may be reconstructed. When two atoms are used we may reconstruct pure states which do not contain adjacent zeros in the photon distribution. Coherent states and number states are among those that may be measured with one-atom interaction, and squeezed states and ?Schrödinger cats‘ are among those that may be measured with a two-atom interaction.  相似文献   

4.
Abstract

It is shown that the deflection of an atom de Broglie wave at two adjacent cavities containing non-resonant weak fields can yield a highly entangled quantum state of the atom–field system in which discernible atomic beams are entangled to internal states of the atom and to two-mode photon-number states of the fields. Two-mode anticorrelated entangled photon-number states characterized by the total photon number can be prepared by the detection of the atom in given directions of the propagation.  相似文献   

5.
Abstract

We demonstrate that operating a micromaser simultaneously on a one- and a two-photon transition leads to a variety of new physical effects. Using a two-photon absorber can substantially lower the stringent temperature requirements to generate states with a very narrow non-classical photon number distribution. In addition one gets a powerful measuring device to investigate dynamical properties of the micromaser field.  相似文献   

6.
Abstract

The time-evolution of a single two-level atom in a single-mode high-Q cavity is sensitive to the quantum fluctuations of the cavity radiation field and to its photon statistics: this sensitivity is realizable experimentally in the Rydberg atom micromaser. We study the effects of the interaction of a two-level atom with two new non-classical radiation fields: the squeezed number state and the displaced number state realizable by nonlinear and linear transformations of field number states which have an initially precise occupation number. The time-varying field fluctuations caused by the atomic interaction are described using the Q-function quasi-probability.  相似文献   

7.
Abstract

The nonclassical photon statistics of one-mode and two-mode combination squeezed states introduced recently by Fan, which have less fluctuation in one quadrature phase than the usual two-mode squeezed states, is discussed. It is found that increasing the degree of two-mode squeezing cannot always increase the photon antibunching depth of these generalized two-mode squeezed states.  相似文献   

8.
Abstract

By utilizing our previous operator solution [17], we have investigated the squeezing in the radiation field of the Tavis-Cummings model (collective N ? 1 two-level atoms interacting with a resonant single cavity quantized mode). With field and atoms initially in coherent field state strong or weak and atomic coherent state (of few excited atoms), periodic time-dependent squeezing in the field and the macroscopic polarization is expressed in terms of Jacobian elliptic functions of the first kind. The statistical investigations are carried out for the quasiprobability distribution functions (Wigner function and Q function). The distribution function of the field quadrature has a variance less (greater) than that for a coherent state if this quadrature is squeezed (unsqueezed).  相似文献   

9.
Abstract

We have studied the phase properties of the squeezed number states by evaluating the expression for the phase probability distribution and the phase variance. In addition, the expression for the photon number distribution of the squeezed phase states has been evaluated.  相似文献   

10.
Abstract

The effect of squeezing on binomial states and on negative binomial states is studied in terms of second-order correlation functions and quasi-probabilities of Wigner and Q-functions. The photon number distribution of these states is also discussed. The results presented for squeezed binomial (negative binomial) states may be useful for studying a transition from squeezed coherent states to squeezed number (quasi-thermal) states.  相似文献   

11.
Abstract

The photon counting distribution of two modes in a directional coupler is studied, looking in particular at the behaviour of photon number states when losses are taken into account.  相似文献   

12.
Abstract

There have recently been several proposals for generation of optical superposition states in the resonant atom-field interaction and more practically in microwave cavities. In the present paper we study the influence of the vacuum reservoir on properties of the near-superposition state of the cavity field which is described by the Jaynes-Cummings model at one-half of the revival time. Instead of introducing the cavity loss from the first instance of the atom-field interaction we consider the cavity loss only after the near-superposition state is produced and after the atom leaves the cavity. We solve the corresponding master equation with the initial condition being the Jaynes-Cummings field at one-half of the revival time. We find that under the influence of the vacuum reservoir the photon number distribution of the superposition state we study exhibits certain asymmetry around the mean photon induced by the decay process. We show that an analogous effect can be seen when the Jaynes-Cummings superposition state is amplified. For a basic test of our approach we study the dissipation and amplification of Fock states.  相似文献   

13.
Abstract

We study the properties of a photodetector that has a numberresolving capability. In the absence of dark counts, due to its finite quantum efficiency, photodetection with such a detector can only eliminate the possibility that the incident field corresponds to a number of photons less than the detected photon number. We show that such a non-photon number-discriminating detector, however, provides a useful tool in the reconstruction of the photon number distribution of the incident field even in the presence of dark counts.  相似文献   

14.
Abstract

The problem of reconstructing a wavefunction from probability distributions is re-examined in the context of whether a pure state vector of a single-mode optical field can be reconstructed from the photon number and phase probability distributions. An analytical solution is given for the case where the state of the mode is a superposition of a finite number of Fock states.  相似文献   

15.
Abstract

The fluorescence photon correlations in a driven four-level atom consisting of three upper closely lying excited states and a single lower state are investigated. It is found that in the presence of triple spontaneously generated coherence (SGC) effects, which are created by three degenerate levels coupling to the common ground state via the same vacuum mode, the correlation properties of the three fluorescence fields can be switched from strong correlation to anticorrelation or vice versa by modifying the detunings. In addition, such a system is very sensitive to the relative phases of the three fields, which can provide an effective way to control the photon correlation. Physically, these interesting phenomena can be interpreted in terms of dressed state analysis.  相似文献   

16.
Abstract

The active microcavity is adopted as an efficient source of non-classical light. By this device, excited by a mode-locked laser at a rate of 100 MHz, single photons are generated over a single field mode with a non-classical sub-Poissonian distribution. The process of adiabatic recycling within a multistep Franck–Condon molecular optical-pumping mechanism, characterized in our case by a quantum efficiency close to one, implies a pump self-regularization process leading to a striking n-squeezing effect. Moreover, the microactivity has been adopted as active beam splitter in a novel Hanbury-Brown–Twiss configuration for the radiation taking place over the two output mirrors. By a replication of the basic single-atom excitation process a beam of quantum photon |n〉 states (Fock states) can be created. The new process may represent a significant advance in the modern fields of basic quantum-mechanical investigation, quantum communication and quantum cryptography.  相似文献   

17.
Abstract

The continuum states formalism is suitable for field quantization in optical fibre; however, they are harder to use than discrete states. On the other hand, a Hermitian phase operator can be defined only in a finite dimensional space. We approximated a coherent continuum state by a finite tensor product of coherent states, each one defined in a finite dimensional space. Using this, in the correct limit, we were able to obtain some statistical properties of the photon number and phase of the continuum coherent states from the probability density functions of the individual, finite dimensional, coherent states. Then, we performed a simulation of the BB84 protocol, using the continuum coherent states, in a fibre interferometer commonly used in quantum cryptography. We observed the fluctuations of the mean photon number in the pulses that arrive at Bob, which occurs in the practical system, introduced by the statistical property of the simulation.  相似文献   

18.
Abstract

We calculate numerically the time evolution of the mean photon number in the process of k-photon down conversion process with quantized pump. The pump mode was supposed to be initially in a superposition of number states and the down converted mode in a number state. We analysed in some detail the influence of the initial field statistics of the pump mode as well as the presence of non-vacuum number states in the down converted mode on the appearance of collapses and revivals.  相似文献   

19.
Abstract

The widely discussed applications in quantum information and quantum cryptography require radiation sources capable of producing a fixed number of photons. This paper reviews the work performed in our laboratory to produce these fields on demand. Two different methods are discussed. The first is based on the one-atom maser or micromaser operating under the conditions of the so-called trapping states. In this situation the micromaser stabilises to a photon number state. Recently, we also succeeded in determining the Wigner function of a single-photon state. The second device, recently realized in our laboratory, uses a single trapped ion in an optical cavity.  相似文献   

20.
Abstract

Phase properties of elliptically polarized light propagating through a nonlinear Kerr medium are considered within the framework of the Pegg-Barnett Hermitian phase formalism. The joint phase probability distribution function for the phases of two orthogonal modes describing elliptical polarization of the field is calculated and its evolution discussed and illustrated graphically. The marginal phase probability distribution for the individual phases are also calculated and discussed. Analytical formulae for phase expectation values and variances are derived for the individual phases as well as for the phase difference. It is shown that in the course of propagation the correlation between the phases of the two modes builds up. This correlation is responsible for lowering phase difference variance. The expressions for the sine and cosine functions and their variances of the individual phases as well as the phase difference are obtained and discussed. The effect of randomization of individual phases and the phase difference, which is a purely quantum effect, is shown to appear during propagation. The relation between phase randomization and degradation of the degree of polarization of the light is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号