首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Abstract

Previous work has shown that a new light source consisting of mutually coherent spectral sidebands ranging from 2.94 μm to 195 nm can be obtained by adiabatic preparation of a molecular ensemble in a single vibrational superposition state. Molecular motion modulated the refractive index and thus led to the frequency modulation of the driving beat-note. The resulting sidebands were equidistant and separated by a frequency equal to the modulation frequency. In the present work we extend this idea by applying more input fields to the molecular ensemble. We take two input fields separated by one half of the modulation frequency, such that their second harmonics drive the molecular ensemble. The proposed approach results in generating an equidistant comb of frequencies separated by a fraction (1/4) of the modulation frequency. Moreover, the intensity of the generated train of pulses increases by the inverse of the same factor. An important feature of the generated comb is that it reaches zero frequency, and as a consequence allows for control of the absolute phase, or the phase of the carrier with respect to the envelope. Since many physical processes, for example photoionization of molecules by intense laser pulses, are influenced by the time dependence of the electric field (and not the envelope), control of absolute phase will become an important issue for few-cycle pulses.  相似文献   

2.
Peng C  Mansuripur M 《Applied optics》2004,43(22):4367-4375
We have investigated the dynamics of amorphization induced in phase-change optical recording media by focused laser pulses of subnanosecond duration. We initiated localized amorphism by using a focused laser beam to melt the phase-change material and completed the change by rapid cooling by means of thermal diffusion. These studies were conducted by use of real-time reflectivity measurements with a pump-and-probe technique in which both pump and probe pulses had a duration of approximately 510 ps. Our transient-reflectivity measurements indicate that the process that leads to amorphism has three distinct stages, namely, rapid melting, solidification, and slow relaxation.  相似文献   

3.
The interaction between high-power short-pulse laser radiation and a metal target is considered. An analysis is made of the transport of material atoms from the surface layer into the bulk of a semi-infinite sample under the action of the stress field of a plane shock wave and a temperature gradient. The results of numerical calculations for a laser power density of 109 W/cm2 and a pulse length of 30 ns show good agreement with the results of earlier experiments. Pis’ma Zh. Tekh. Fiz. 23, 84–87 (March 12, 1997)  相似文献   

4.
Series of time-resolved still images of the explosion dynamics of micrometer-sized water droplets after femtosecond laser-pulse irradiation were obtained for different laser-pulse intensities. Amplified pulses centered around a wavelength of 805 nm with 1-mJ energy and 60-fs duration were focused onto the droplet to initiate the dynamics. Several effects, such as forward and backward plumes, jets, water films, and shock waves, were investigated. Additionally, the influence of different pulse durations produced by chirping the laser pulses was observed.  相似文献   

5.
Rothenberg JE 《Applied optics》2000,39(36):6931-6938
A high-frequency train of 5-100-ps pulses (picket fence) is proposed to improve significantly the third-harmonic frequency conversion of Nd:glass lasers that are used to generate high-contrast-shaped pulses for inertial confinement fusion (ICF) targets. High conversion efficiency of the low-power foot of a shaped ICF pulse is obtained by use of a low duty cycle, multi-gigahertz train of ~20-ps pulses with high peak power. Even with less than 10% duty cycle, continuous illumination is maintained on the target by a combination of temporal broadening schemes. The picket fence approach is analyzed, and the practical limits are identified as applied to the National Ignition Facility laser. It is found that the higher conversion efficiency allows ~40% more third-harmonic energy to be delivered to the target, potentially enabling the larger drive needed for high-yield ICF target designs. In addition, the frequency conversion efficiency of these short pulses saturates much more readily, which reduces the transfer of fluctuations at the fundamental and thus greatly improves the power stability of the third harmonic.  相似文献   

6.
7.
Thresholds of optical damage to sodium chloride by ultrashort laser pulses with a duration of about 40 fs are determined. Experiments were carried out using a terawatt titanium–sapphire laser device. p-polarized laser radiation at a wavelength of 800 nm fell on the specimen surface at an angle of 60°. Optical damage to the surface was observed when the critical electric field strength attained 94 MV/cm.  相似文献   

8.
Bian F  Tian YC  Wang R  Yang HX  Xu H  Meng S  Zhao J 《Nano letters》2011,11(8):3251-3257
Ultrasmall nanopores in silver thin films with a diameter of about 2 nm have been fabricated using femtosecond laser ablation in liquid. Ultrafast laser pulse ablation generates highly nonequilibrium excitated states, from which silver thin films emerge and progressively grow with the assistance of capping agent molecules. During this growth process, capping agent molecules are enclaved within the film, leaving individual ultrasmall pores in the thin film. Our first-principles calculations show that the pore size is critically determined by the dimension of the confined molecules. Our approach advances the capability of optical methods in making nanoscale structures with potential applications in areas such as near-field aperture probes, imaging masks, magnetic plasmonic resonances, and biosensing with individual nanopores.  相似文献   

9.
10.
A new method is described for spectroscopic diagnostics of combustion and explosion products, which makes it possible to study processes occurring at short times in hot and dense molecular gases. Pis’ma Zh. Tekh. Fiz. 23, 16–19 (March 26, 1997)  相似文献   

11.
Electron acceleration by subcycle laser pulses is studied. It is shown in the particle simulations that the irradiation of an intense subcycle pulse on a thin plasma layer gives rise to a pickup of all plasma electrons on the spot and accelerate them to lead to a formation of the high-energy bunched electrons. The condition of generating coherent synchrotron radiation from the bunched electrons is estimated to apply to a bright X-ray source.  相似文献   

12.
The use of ultrafast laser pulses to initiate solid-state phase-transitions in certain materials has shown promise in achieving sub-nanosecond phase changes with different optical properties. These phase changes have been well studied using pulse durations between femtoseconds and nanoseconds to determine the dynamics for the reversible phase changes on multiple time scales. In this study femtosecond pulse shaping techniques, driven by evolutionary algorithms, were used to obtain optimized temporally shaped ultrashort laser pulses to induce and control permanent phase changes in GeSb thin-films. Through monitoring the pulse effects it has been determined that the crystalline-to-amorphous phase transition is minimized using optical pulses with pulse widths less than the electron-phonon coupling time. It is maximized by using pulses longer than the time required for energy transfer from the excited carriers to the lattice.  相似文献   

13.
Fine-pitched microgratings are encoded on fused silica surfaces by a two-beam laser interference technique employing UV femtosecond pulses from the third harmonics of a Ti:sapphire laser. A pump and prove method utilizing a laser-induced optical Kerr effect or transient optical absorption change has been developed to achieve the time coincidence of the two pulses. Use of the UV pulses makes it possible to narrow the grating pitches to an opening as small as 290 nm, and the groove width of the gratings is of nanoscale size. The present technique provides a novel opportunity for the fabrication of periodic nanoscale structures in various materials.  相似文献   

14.
Using a fully classical model, we have studied sequential double ionization of argon driven by elliptically polarized laser pulses at intensities well in the over-barrier ionization region. The results show that the joint electron momentum distributions in the minor elliptical direction depend strongly on the pulse duration. From pulse number N = 4 to 10, the clustering regions of the joint electron momentum increase with the pulse duration. For even larger pulse durations, the clustering region does not increase further but the population of the joint electron momentum in these regions changes with the pulse duration. Back analysis of double ionization trajectories shows the phenomenon of multiple ionization bursts and the pulse duration-dependent multiple ionization bursts of the second electron is responsible for the evolution of the joint electron momentum distribution with the pulse duration.  相似文献   

15.
With a classical ensemble model, we investigated non-sequential double ionization (NSDI) of argon by elliptically polarized laser pulses. The results show that the correlation behaviors of two electrons depend strongly on the laser intensity. At relatively high laser intensity, the momentum spectra of two electrons along the long axis of the laser polarization plane are mainly distributed in the first and third quadrants and display V-like structures. However, at relatively low laser intensity, the momentum spectra of two electrons are mainly distributed in the second and fourth quadrants. By back analyzing the classical trajectories of NSDI, we find that all of the successful NSDI events still come from recollision in the cases of elliptically polarized laser pulses, and the final-state electron repulsion plays a decisive role for the V-like structure along the long axis of the laser polarization plane. In addition, we find that the initial velocity of the first electron at ionization along the short axis of the laser polarization plane are essential for the recollision, and the time delay between the first ionization and recollision depends on the ellipticity strongly.  相似文献   

16.
17.
Scattering of femtosecond laser pulses by small droplets has been measured and compared with predictions, yielding some interesting new applications for time integrated detection of the scattered field. The scattering intensity of integrated detection becomes monotonic with droplet size over large regions of scattering angle and morphology dependent resonances are surpressed, opening the way for particle sizing using the scattered intensity. Furthermore, the ripple structure no longer appears in the rainbow region of scattering, simplifying rainbow refractometry significantly. These scattering proporties of femtosecond laser pulses have been demonstrated in the laboratory using a novel Paul trap for levitating single droplets.  相似文献   

18.
Xu B  Coello Y  Lozovoy VV  Dantus M 《Applied optics》2010,49(32):6348-6353
A fast and automated approach to measuring two-photon fluorescence excitation (TPE) spectra of fluorophores with high resolution (~2 nm) by pulse shaping ultrabroad-bandwidth femtosecond laser pulses is demonstrated. Selective excitation in the range of 675-990 nm was achieved by imposing a series of specially designed phase and amplitude masks on the excitation pulses using a pulse shaper. The method eliminates the need for laser tuning and is, thus, suitable for non-laser-expert use. The TPE spectrum of Fluorescein was compared with independent measurements and the spectra of the pH-sensitive dye 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in acidic and basic environments were measured for the first time using this approach.  相似文献   

19.
The in-beam and off-beam gamma-ray spectroscopy method, as a tool for the study of nuclear fusion between heavy ions, is described. These methods allow the study of the production and decay of the compound nucleus, inelastic scattering and transfer reactions. In this work we report the determination of fusion cross sections at energies near and below the Coulomb barrier for a series of systems: targets of 46,50Ti, 59Co and 64,66Zn bombarded by 14N and 16O projectiles. Cross sections from 0.4 to 1000 mb were measured.  相似文献   

20.
Devrelis V  O'Connor M  Munch J 《Applied optics》1995,34(24):5386-5389
A novel interferometric method for the direct, real-time measurement of the complete temporal coherence function of a pulsed laser is presented. A Michelson interferometer is modified by replacing one mirror with an inclined diffraction grating to observe interference fringes as a function of path-length difference on a single pulse. Computerized data acquisition and methods of extending the range of wavelengths to the infrared are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号