首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum states are inherently fragile, making their storage a major concern for many practical applications and experimental tests of quantum mechanics. The field of quantum memories is concerned with how this storage may be achieved, covering everything from the physical systems best suited to the task to the abstract methods that may be used to increase performance. This review concerns itself with the latter, giving an overview of error correction and self-correction, and how they may be used to achieve fault-tolerant quantum computation. The planar code is presented as a concrete example, both as a quantum memory and as a framework for quantum computation.  相似文献   

2.
黄光锋  卢安贤 《材料导报》2006,20(5):30-32,36
介绍了半导体量子点材料禁阻类型,详细阐述了共熔法、溶胶-凝胶法、离子注入法等半导体量子点玻璃材料的制备方法,探讨了半导体量子点玻璃的尺寸效应、禁阻效应、库仑阻塞效应和非线性光学效应等特性及其未来应用前景.  相似文献   

3.
Photonics offers a route to fast and distributed quantum computing in ambient conditions, provided that photon sources and logic gates can be operated deterministically. Quantum memories, capable of storing and re-emitting photons on demand, enable quasi-deterministic operations by synchronizing stochastic events. Interfaced source–memory systems are thus a key building block in photonics-based quantum information processors. We discuss the design of the single-photon source in this type of light–matter interface and present an experimental system based on a Raman-type quantum memory. In addition to the spectral purity of the produced heralded single photons, we find that their temporal distinguishability also becomes important due to the implicit temporal binning derived from photon storage in the memory. When aiming to operate the source–memory system at high repetition rates, a practical compromise between both of these requirements needs to be found. Our implemented photon source system demonstrates such a solution and enables passive stability, high brightness in a single-pass configuration, high purity as well as good mode matching to our Raman memory.  相似文献   

4.
Recent years have witnessed tremendous research in quantum dots as excellent models of quantum physics at the nanoscale and as excellent candidates for various applications based on their optoelectronic properties. This review intends to present theoretical and experimental investigations of the near-field optical properties of these structures, and their multimodal applications such as biosensors, biological labels, optical fibers, switches and sensors, visual displays, photovoltaic devices and related patents.  相似文献   

5.
Spatial confinement of quantum excitations on their characteristic wavelength scale in low dimensional materials offers unique possibilities to engineer the electronic structure and thereby control their physical properties by way of simple manipulation of geometrical parameters. This has led to an overwhelming interest in quasi-zero dimensional semiconductors or quantum dots as tunable materials for multitude of exciting applications in optoelectronic and nonlinear optical devices and quantum information processing. Large nonlinear optical response and high luminescence quantum yield expected in these systems is a consequence of huge enhancement of transition probabilities ensuing from quantum confinement. High quantum efficiency of photoluminescence, however, is not usually realized in the case of bare semiconductor nanoparticles owing to the presence of surface states. In this talk, I will focus on the role of quantum confinement and surface states in ascertaining nonlinear optical and optoelectronic properties of II–VI semiconductor quantum dots and their nanocomposites. I will also discuss the influence of nonlinear optical processes on their optoelectronic characteristics.  相似文献   

6.
Metal halide perovskite nanostructures have sparked intense research interest due to their excellent optical properties. In recent years, although the green and red perovskite light-emitting diodes (PeLEDs) have achieved a significant breakthrough with the external quantum efficiency exceeding 20%, the blue PeLEDs still suffer from inferior performance. Previous reviews about blue PeLEDs focus more on 2D/quasi-2D or 3D perovskite materials. To develop more stable and efficient blue PeLEDs, a systematic review of blue perovskite quantum dots (PQDs) is urgently demanded to clarify how PQDs evolve. In this review, the recent advances in blue PQDs involving mixed-halide, quantum-confined all-bromide, metal-doped and lead-free PQDs as well as their applications in PeLEDs are highlighted. Although several excellent PeLEDs based on these PQDs have been demonstrated, there are still many problems to be solved. A deep insight into the advantages and disadvantages of these four types of blue-emitting PQDs is provided. Then, their respective potential and issues for blue PeLEDs have been discussed. Finally, the challenges and outlook for efficient and stable blue PeLEDs based on PQDs are addressed.  相似文献   

7.
Inorganic halide perovskite quantum dots (IHPQDs) have recently emerged as a new class of optoelectronic nanomaterials that can outperform the existing hybrid organometallic halide perovskite (OHP), II–VI and III–V groups semiconductor nanocrystals, mainly due to their relatively high stability, excellent photophysical properties, and promising applications in wide‐ranging and diverse fields. In particular, IHPQDs have attracted much recent attention in the field of photoelectrochemistry, with the potential to harness their superb optical and charge transport properties as well as spectacular characteristics of quantum confinement effect for opening up new opportunities in next‐generation photoelectrochemical (PEC) systems. Over the past few years, numerous efforts have been made to design and prepare IHPQD‐based materials for a wide range of applications in photoelectrochemistry, ranging from photocatalytic degradation, photocatalytic CO2 reduction and PEC sensing, to photovoltaic devices. In this review, the recent advances in the development of IHPQD‐based materials are summarized from the standpoint of photoelectrochemistry. The prospects and further developments of IHPQDs in this exciting field are also discussed.  相似文献   

8.
杨历  刘远洲  李子院  覃爱苗 《材料导报》2018,32(21):3737-3742
硫化铜量子点作为一种p型半导体纳米晶,具有很强的表面等离子体共振效应、低的毒性以及独特的光学和电学性能,在光催化、生物技术、光电转换材料领域受到了极大关注。由于单分散的硫化铜量子点的制备过程复杂,效率较低,并且纯的硫化铜量子点电导率较低,这极大地限制了其在能量存储器件方面的应用。此外,由于硫化铜量子点复杂的能带结构和独特的p型半导体特性,针对硫化铜量子点的光学性能调控尚不成熟。基于此,本文综述了硫化铜量子点在制备方面的研究现状与取得的进展,介绍了硫化铜量子点的能带结构、晶体结构,及其在量子点敏化太阳能电池、光催化降解污染物、肿瘤细胞诊断与治疗等方面的研究进展,并对硫化铜量子点或Cu系量子点更进一步的研究、开发应用提出了几点建议。  相似文献   

9.
《Journal of Modern Optics》2013,60(12):1469-1503
In this paper we review the current state of development of fibre optic sensors, including those based on both monomode and multimode technology. For monomode techniques, a general formalism describing their optical characteristics is developed; electronic processing techniques and noise performance are also considered. Examples of their application in the measurement of temperature, pressure, strain, flow, rotation and magnetic field are described. Extrinsic devices such as velocimeters and vibrometers, and applications in holography, are also discussed. Multimode techniques based on intensity and wavelength modulation and quantum effects are considered, and their application to a wide range of measurands is reviewed.  相似文献   

10.
Colloidal quantum dot (CQD) optoelectronics offers a compelling combination of low‐cost, large‐area solution processing, and spectral tunability through the quantum size effect. Since early reports of size‐tunable light emission from solution‐synthesized CQDs over 25 years ago, tremendous progress has been made in synthesis and assembly, optical and electrical properties, materials processing, and optoelectronic applications of these materials. Here some of the major developments in this field are reviewed, touching on key milestones as well as future opportunities.  相似文献   

11.
One of the most ambitious technological goals is the development of devices working under the laws of quantum mechanics. Among others, an important challenge to be resolved on the way to such breakthrough technology concerns the scalability of the available Hilbert space. Recently, proof‐of‐principle experiments were reported, in which the implementation of quantum algorithms (the Grover's search algorithm, iSWAP‐gate, etc.) in a single‐molecule nuclear spin qudit (with d = 4) known as 159TbPc2 was described, where the nuclear spins of lanthanides are used as a quantum register to execute simple quantum algorithms. In this progress report, the goal of linear and exponential up‐scalability of the available Hilbert space expressed by the qudit‐dimension “d” is addressed by synthesizing lanthanide metal complexes as quantum computing hardware. The synthesis of multinuclear large‐Hilbert‐space complexes has to be carried out under strict control of the nuclear spin degree of freedom leading to isotopologues, whereby electronic coupling between several nuclear spin units will exponentially extend the Hilbert space available for quantum information processing. Thus, improved multilevel spin qudits can be achieved that exhibit an exponentially scalable Hilbert space to enable high‐performance quantum computing and information storage.  相似文献   

12.
Abstract

An encoding technique based on speckle random patterns as carrier together with the beam-fanning concept is introduced to realize photo-refractive optical volume holographic memory. The set-up is based on beam-fanning geometry employing a single input beam in a BaTiO3 crystal. Retrieval of information from this kind of memory system is very sensitive to code matching. Therefore, in the case of multiple storage, the cross-talk is minimized. The preliminary experimental results are presented with their possible applications in increasing the information storage capacity of volume holographic memories, with resultant reduced cross-talk. A dual-channel optical processor has also been realized wherein object information together with its contrast reversed version are obtained at the output channels simultaneously.  相似文献   

13.
Carbon-based quantum dots (QDs) have emerged as a fascinating class of advanced materials with a unique combination of optoelectronic, biocompatible, and catalytic characteristics, apt for a plethora of applications ranging from electronic to photoelectrochemical devices. Recent research works have established carbon-based QDs for those frontline applications through improvements in materials design, processing, and device stability. This review broadly presents the recent progress in the synthesis of carbon-based QDs, including carbon QDs, graphene QDs, graphitic carbon nitride QDs and their heterostructures, as well as their salient applications. The synthesis methods of carbon-based QDs are first introduced, followed by an extensive discussion of the dependence of the device performance on the intrinsic properties and nanostructures of carbon-based QDs, aiming to present the general strategies for device designing with optimal performance. Furthermore, diverse applications of carbon-based QDs are presented, with an emphasis on the relationship between band alignment, charge transfer, and performance improvement. Among the applications discussed in this review, much focus is given to photo and electrocatalytic, energy storage and conversion, and bioapplications, which pose a grand challenge for rational materials and device designs. Finally, a summary is presented, and existing challenges and future directions are elaborated.  相似文献   

14.
Semiconductor nanostructures show many special physical properties associated with quantum confinement effects, and have many applications in the opto-electronic and microelectronic fields. However, it is difficult to calculate their electronic states by the ordinary plane wave or linear combination of atomic orbital methods. In this paper, we review some of our works in this field, including semiconductor clusters, self-assembled quantum dots, and diluted magnetic semiconductor quantum dots. In semiconductor clusters we introduce energy bands and effective-mass Hamiltonian of wurtzite structure semiconductors, electronic structures and optical properties of spherical clusters, ellipsoidal clusters, and nanowires. In self-assembled quantum dots we introduce electronic structures and transport properties of quantum rings and quantum dots, and resonant tunneling of 3-dimensional quantum dots. In diluted magnetic semiconductor quantum dots we introduce magnetic-optical properties, and magnetic field tuning of the effective g factor in a diluted magnetic semiconductor quantum dot.  相似文献   

15.
碳量子点作为一种新型的纳米材料,具有荧光性能优异、尺寸小、毒性低等诸多优势,因而具有良好的应用前景,尤其在生物医学领域有突出的应用价值,近年来引起了科研者们的广泛关注。在介绍碳量子点光学性质的基础上,重点综述了碳量子点在生物成像、诊疗剂应用及碳量子点生物毒性等方面的最新研究进展,并探讨了碳量子点未来的发展方向和前景。  相似文献   

16.
Resistive switching (RS) behaviors have attracted great interest due to their promising potential for the data storage. Among various materials, oxide-based devices appear to be more advantageous considering their handy fabrication and compatibility with CMOS technology, though the underlying mechanism is still controversial due to the diversity of RS behaviors. In this review, we focus on the oxide-based RS memories, in which the working mechanism can be understood basically according to a so-called filament model. The filaments formation/rupture processes, approaches developed to detect and characterize filaments, several effective attempts to improve the performances of RS and the quantum conductance behaviors in oxide-based resistive random access memory (RRAM) devices are addressed, respectively.  相似文献   

17.
Abstract

Low-noise, efficient, phase-sensitive time-domain optical detection is essential for foundational tests of quantum physics based on optical quantum states and the realization of numerous applications ranging from quantum key distribution to coherent classical telecommunications. Stability, bandwidth, efficiency, and signal-to-noise ratio are crucial performance parameters for effective detector operation. Here we present a high-bandwidth, low-noise, ultra-stable time-domain coherent measurement scheme based on balanced homodyne detection ideally suited to characterization of quantum and classical light fields in well-defined ultrashort optical pulse modes.  相似文献   

18.
Materials with large optical nonlinearity, especially in the visible spectral region, are in great demand for applications in all‐optical information processing and quantum optics. 2D hybrid Ruddlesden?Popper‐type halide perovskites (RPPs) with tunable ultraviolet‐to‐visible direct bandgaps exhibit large nonlinear optical responses due to the strong excitonic effects present in their multiple quantum wells. Using a microscopic Z‐scan setup with femtosecond laser pulses tunable across the visible spectrum, it is demonstrated that single‐crystalline lead halide RPP nanosheets possess unprecedentedly large nonlinear refraction and absorption coefficients near excitonic resonances. A room‐temperature insulator (exciton)–metal (plasma) Mott transition is found to occur near the exciton resonance of the thinnest qunatum‐well RPPs, boosting the nonlinear response. Owing to the rapidly changing refractive index near resonance, a single RPP crystal can exhibit different nonlinear functionalities across the excitation spectrum. The results suggest that RPPs are efficient nonlinear materials in the visible waveband, indicating their potential use in integrated nonlinear photonic applications such as optical modulation and switching.  相似文献   

19.
A novel synthesis for a titanate nanosheets loaded nanocomposite has been developed. On this basis, a multifunctional material for optical applications has been fabricated with tunable refractive index, improved processing behavior and luminescent properties imparted by the incorporation of semiconductor quantum dots.Titanate synthesis, host material choice and quantum dots functionalization have been here addressed to obtain films with good optical quality and stable photoluminescence.In order to assess the potential application of the obtained nanocomposites, imprinting lithography and aerosol-based deposition techniques have been applied with promising results.The obtained nanocomposites have been characterized by UV–Vis, photoluminescence and FT-IR spectroscopy, X-ray diffraction and Transmission Electron Microscopy. The optical properties of the nanocomposite film have been tested by spectroscopic ellipsometry and M-line technique.  相似文献   

20.
Laser‐induced thermal effects in optically trapped microspheres and single cells are investigated by quantum dot luminescence thermometry. Thermal spectroscopy has revealed a non‐localized temperature distribution around the trap that extends over tens of micrometers, in agreement with previous theoretical models besides identifying water absorption as the most important heating source. The experimental results of thermal loading at a variety of wavelengths reveal that an optimum trapping wavelength exists for biological applications close to 820 nm. This is corroborated by a simultaneous analysis of the spectral dependence of cellular heating and damage in human lymphocytes during optical trapping. This quantum dot luminescence thermometry demonstrates that optical trapping with 820 nm laser radiation produces minimum intracellular heating, well below the cytotoxic level (43 °C), thus, avoiding cell damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号