首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A scheme for high gain and narrow linewidth of an optical cavity with a four-level atomic system is proposed by the Doppler effect via active Raman gain (ARG) process. Atomic motion leads to Doppler frequency shift which induces constructive interference for the linear susceptibility. The enhanced normal dispersion greatly narrows the cavity linewidth, and the amplified gain gives rise to a high cavity transmission. Simulation results show that the cavity linewidth based on ARG is about one order of magnitude narrower than that based on electromagnetically-induced transparency under the same conditions, and the cavity transmission intensity could be enhanced by nearly 30 times.  相似文献   

2.
A scheme for tunneling control of cavity linewidth narrowing by quantum interference in triangular-type triple quantum dots (TQDs) is proposed. In such system, quantum interference induced by tunneling between the TQDs can result in the appearance of two transparency windows and a steep dispersion. Furthermore, when the sample is embedded in a ring cavity, an ultranarrow transmission peak is obtained within the narrowed transparency windows. And by varying the tunneling, the linewidth and the position of the ultranarrow transmission peak can be engineered. Because no coupling laser is required, the scheme proposed here is more convenient for future experiments and applications in optics, and may be useful in designing novel optoelectronic devices.  相似文献   

3.
Huang H  Ren X  Wang X  Cui H  Wang W  Miao A  Li Y  Wang Q  Huang Y 《Applied optics》2006,45(33):8448-8453
We demonstrate a wavelength-selective photodetector that combines a Fabry-Perot filtering cavity (FPC) with a taper absorption cavity (TAC). The taper cavity shows a nonresonant effect but exhibits an absorption enhancement effect, so that high speed, high quantum efficiency, wide tuning range, and an ultranarrow spectral linewidth can be achieved simultaneously. Device performance was theoretically investigated by including key factors such as taper angle, finite-size diffracting-beam input, and lateral walk-off in the taper cavity. The device was fabricated by bonding a GaAs-based FPC, which can be tuned via thermal-optic effect, with an InP-based TAC. An integrated device with a spectral linewidth of 0.6 nm (FWHM), a wavelength tuning range of 10.2 nm(1518.0-1528.2 nm), a 3 dB bandwidth of 12 GHz, and a quantum efficiency of approximately 70% was demonstrated, and the absorption layer thickness is only 0.3 microm.  相似文献   

4.
Theory and experiments of a three-cavity wavelength-selective photodetector   总被引:7,自引:0,他引:7  
Liu K  Huang Y  Ren X 《Applied optics》2000,39(24):4263-4269
We propose a novel wavelength-selective photodetector with three subcavities, i.e., a filtering cavity, a spacer cavity, and an absorption cavity, for obtaining a narrow spectral response linewidth and a high quantum efficiency simultaneously. A theoretical prediction has been made that a less than 1-nm linewidth and a quantum efficiency as high as 90% are possible. We discuss the effects of the key factors on the performance of this type of photodetector that has been designed and fabricated. A spectral response linewidth of approximately 1.4 nm (FWHM) and an external quantum efficiency higher than 50% have been achieved experimentally. Such devices are promising for wavelength-division multiplexing applications.  相似文献   

5.
Atomic media inside an optical cavity can significantly alter the spectral response of the cavity. Both theoretical and experimental examinations are made of the cavity transmission with a highly dispersive intracavity multilevel atomic medium. It is found, owing to the reduced absorption and steep dispersion change accompanying electromagnetically induced transparency in such a multi-level atomic medium, that the cavity linewidth can be made much narrower than the empty cavity linewidth. Cavity linewidth narrowing is measured as a function of both the coupling beam power and the atomic density. These experimental results are in good agreement with the theoretical predictions.  相似文献   

6.
The studies of the emission linewidth for single-mode near-IR vertical-cavity surface-emitting lasers with an active region based on InGaAs/AlGaAs quantum wells and different optical microcavity design. For low mirror loss, lasers with a 1λ cavity and carrier injection through distributed Bragg reflectors demonstrate a linewidth of 70 MHz and its growth to 110 MHz with increasing mirror loss (corresponding differential of efficiency ~0.65 W/A). The design of the optical cavity with carrier injection through intracavity contacts and low-Q composition Bragg lattices reduces the linewidth to 40 MHz in spite of high mirror loss (corresponding differential efficiency of ~0.6 W/A).  相似文献   

7.
Bondu F  Debieu O 《Applied optics》2007,46(14):2611-2614
It is shown how the transfer function from frequency noise to a Pound-Drever-Hall signal for a Fabry-Perot cavity can be used to accurately measure cavity length, cavity linewidth, mirror curvature, misalignments, laser beam shape mismatching with resonant beam shape, and cavity impedance mismatching with respect to vacuum.  相似文献   

8.
Rakhmanov M 《Applied optics》2001,40(12):1942-1949
The Doppler effect in Fabry-Perot cavities with suspended mirrors is analyzed. The Doppler shift, which is intrinsically small, accumulates in the cavity and becomes comparable with or greater than the linewidth of the cavity if the cavity's finesse is high or its length is large. As a result, damped oscillations of the cavity field occur when one of the mirrors passes a resonance position. A formula for this transient is derived. It is shown that the frequency of the oscillations is equal to the accumulated Doppler shift and that the relaxation time of the oscillations is equal to the storage time of the cavity. Comparison of the predicted and the measured Doppler shifts is discussed, and application of the analytical solution for measurement of the mirror velocity is described.  相似文献   

9.
Recently, we have been investigating the development of a superluminal ring laser, where finely tuned anomalous dispersion leads to an enhancement in the sensitivity of the laser frequency to a change in the cavity length, by as much as six orders of magnitude, for applications such as hypersensitive rotation sensing and accelerometry, as well as for gravitational wave detection. For such a laser, as well as other lasers that are used for precision metrology, the effective dispersion – manifested in the manner in which the lasing frequency varies as a function of a change in the cavity length due to the index induced by the medium under saturated gain corresponding to steady-state lasing – is of utmost significance. In determining the effective dispersion, the role of inhomogeneous broadening (IB) must be taken into consideration carefully. In this work, we consider an inhomogeneously broadened gain medium in a single mode optical cavity, and study the effective dispersion experienced by the lasing field. It is well known that the steady state index for such a laser cannot be expressed analytically. Previous studies have employed approximate models to interpret the effective dispersion, in two limits: IB is much larger than homogeneous broadening (HB), and IB is insignificant compared to HB. Here, we use an iterative but quickly converging numerical code to determine the exact behavior of the effective dispersion under all conditions, and show that the results agree with the expected behavior in these two limits. This technique paves the way for taking into account the effective dispersion in any inhomogeneously broadened laser, including the superluminal laser, in determining accurately its sensitivity to change in cavity length, as well as it quantum noise limited linewidth.  相似文献   

10.
自2005年至今,主动光钟经过了近20年的发展。主动光钟利用原子系综作为增益介质,其受激辐射可直接作为钟激光信号。因为主动光钟工作在坏腔区域,因此具有腔牵引抑制和窄线宽两个显著的优点,可以有效克服被动光钟存在的腔长热噪声问题。由于其优越的性能,主动光钟受到了国内外同行的广泛关注。根据实现方式不同,本文将主动光钟划分为原子束型主动光钟、基于激光冷却和光晶格囚禁的主动光钟、原子束及光晶格“复合型”主动光钟、法拉第主动光钟、离子阱囚禁型主动光钟以及热原子气室型主动光钟。对于不同类型的主动光钟,本文详细介绍了其实验及理论研究进展,并分析其优劣。最后,分析了主动光钟在精密测量领域的应用并展望了主动光钟的发展方向,为推动主动光钟的广泛应用提供借鉴。  相似文献   

11.
Persistent efforts have been made to achieve efficient light emission from silicon in the hope of extending the reach of silicon technology into fully integrated optoelectronic circuits, meeting the needs for high-bandwidth intrachip and interchip connects. Enhanced light emission from silicon is known to be theoretically possible, enabled mostly through quantum-confinement effects. Furthermore, Raman-laser conversion was demonstrated in silicon waveguides. Here we report on optical gain and stimulated emission in uniaxially nanopatterned silicon-on-insulator using a nanopore array as an etching mask. In edge-emission measurements, we observed threshold behaviour, optical gain, longitudinal cavity modes and linewidth narrowing, along with a collimated far-field pattern, all indicative of amplification and stimulated emission. The sub-bandgap 1,278 nm emission peak is attributed to A-centre mediated phononless direct recombination between trapped electrons and free holes. The controlled nanoscale silicon engineering, combined with the low material loss in this sub-bandgap spectral range and the long electron lifetime in such A-type trapping centres, gives rise to the measured optical gain and stimulated emission and provides a new pathway to enhance light emission from silicon.  相似文献   

12.
A scheme for obtaining a tunable ultranarrow linewidth of a cavity due to an embedded four-level atomic medium with double-dark resonances is proposed. It is shown that the steep dispersion induced by double-dark resonances in the transparency window leads to the ultranarrow transmission peak. Compared with the case of a single-dark resonance system, the linewidth can be narrowed even by one order under proper conditions. Furthermore, the position of the ultranarrow peak can be engineered by varying the detuning of the control field.  相似文献   

13.
Wang W  Huang Y  Duan X  Tian J  Guo J  Ren X 《Applied optics》2012,51(10):1487-1494
This paper presents the design and analysis of a Si-based tunable flattop photodetector realized by the introduction of a stepped Fabry-Perot cavity, which can be thermally tuned via applying tuning power on its tuning electrode. By using a transfer matrix method, the spectral response of the photodetector is simulated in detail, indicating a flattop line shape can be achieved with an optimum step height. A trade-off residing in this device between the free spectrum range and the ease of fabrication of step height is also revealed and analyzed. In the final design of the photodetector, 1 dB linewidth of 0.5 nm, 3 dB linewidth of 0.8 nm, 6 dB linewidth of 1.2 nm, peak quantum efficiency of 40%, tuning efficiency of 91 mW/nm are theoretically obtained. We discuss the epitaxial growth and fabrication of the photodetector in the end, exhibiting the mature technique available for this device.  相似文献   

14.
Synchronous extraction of energy from cavity resonators for X-band microwave radiation through a compact packet of five interference switches based on H tees has been experimentally analyzed. It is shown that switches can be completely synchronized and the synchronization conditions are determined. Microwave pulses have been generated upon synchronous extraction of energy from five single-mode cavities (power ~0.8 MW, gain ~12 dB, and width ~3.2 ns) and from one superdimensional cavity (power ~2.2 MW, gain ~16.5 dB, and width ~3.5 ns). The operation limits of X- and S-band microwave compressors with extraction of energy through a packet are estimated.  相似文献   

15.
The net modal gain, effective group index and linewidth enhancement factor (LWEF) in edge-emitting InGaAsN/GaAs lasers have been determined as a function of both temperature and injection current from experimentally amplified spontaneous emission spectra. The shift of the peak gain with temperature was found to be 0.49 nm/K. Values of effective group index between 3.52 and 3.59 were measured, suggesting a relatively high refractive index of 3.75 for a dilute nitride quantum well. LWEF values between 1.87 and 2.84 were measured.  相似文献   

16.
17.
Zhu XL  Lam SK  Lo D 《Applied optics》2000,39(18):3104-3107
Dye-doped solgel silica lasers with distributed feedback were demonstrated. Solgel silica slabs doped with Rhodamine 6G or Coumarin 460 dyes were fabricated. Periodic gain modulation in dye-doped solgel silica slabs were created by the interference pattern of the pumped laser beams diffracted by a holographic grating. Laser pulse trains with subnanosecond spikes were induced. Laser emission wavelengths were centered at 480 and 585 nm for Rhodamine 6G and Coumarin 460, respectively. It was possible for us to tune approximately 20 nm around the emission centers by varying the intersection angle. The laser linewidth was of the order of 60 pm.  相似文献   

18.
现有的工业CO2激光器,主要为横流,纵流和扩散冷却三种,章提出一种新型激光器,即圆形金属腔CO2激光器,该激光器的腔体由多个等距,同轴安装的空腔单元组成,每个腔单元有多个流道,放电在流道与腔体接口处产生,气流将放电及被其激活的粒子吹入腔内,形成增益,输电激光,章研究了电极结构,金属腔壁对工作气体的冷却作用和胺内的增益分布,研究结果表明,多通道放电吹入和腔内旋流,有利于腔内的均匀放电,金属腔壁有利于腔内对流冷却,降低对气速度的要求,从而缩小激光器的体积,相邻的腔单元相对转动适当角度,可以提高腔内增益分布的圆周均匀性,从而获得光束质量好的激光束。  相似文献   

19.
We report a theoretical dynamical analysis on effect of semiconductor laser phase noise on the achievable linewidth when locked to a Fabry-Perot cavity fringe using a modulation-demodulation frequency stabilization technique such as the commonly used Pound-Drever-Hall frequency locking scheme. We show that, in the optical domain, the modulation-demodulation operation produces, in the presence of semiconductor laser phase noise, two kinds of excess noise, which could be much above the shot noise limit, namely, conversion noise (PM-to-AM) and intermodulation noise. We show that, in typical stabilization conditions, the ultimate semiconductor laser linewidth reduction can be severely limited by the intermodulation excess noise. The modulation-demodulation operation produces the undesirable nonlinear intermodulation effect through which the phase noise spectral components of the semiconductor laser, in the vicinity of even multiples of the modulation frequency, are downconverted into the bandpass of the frequency control loop. This adds a spurious signal, at the modulation frequency, to the error signal and limits the performance of the locked semiconductor laser. This effect, reported initially in the microwave domain using the quasistatic approximation, can be considerably reduced by a convenient choice of the modulation frequency.  相似文献   

20.
Abstract

The interaction of a four-level atom consisting of one excited state, two upper levels and one ground state is considered. We use one field to drive the transition between the excited state and the ground state, and simultaneously apply another field to couple two transitions from the upper-level doublet to the ground state. We investigate how to control the central linewidth of resonance fluorescence spectrum of the driven transition via quantum interference between two transitions from the upper doublet to the ground state of the atom. In the case of orthogonal dipole moments for the upper doublet and the ground state the widths of the central line and the sidebands of the resonance fluorescence spectrum are totally controlled by the spontaneous emission rate of the upper doublet when the applying field is sufficiently strong. When the dipole moments are parallel, the central linewidth can be much narrower than the linewidths of spontaneous emission of the excited state and of the upper doublet due to the quantum interference. The smaller the upper doublet splitting, the narrower the central linewidth. We also notice that when the upper levels are degenerate the resonance fluorescence spectrum may depend on the initial condition because of the quantum interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号