首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To manipulate electrons in semiconductor electronic and optical devices, the usual approach is through materials composition, electronic bandgap, doping, and interface engineering. More advanced strategies for handling electrons in semiconductor devices include composition-controlled heterostructures and gradient structures. By analogy to the manipulation of electrons in semiconductor crystals by electronic bandgaps, photons in photonic crystals can be managed using photonic bandgaps. In this context, the simplest photonic crystal is the Bragg mirror, a periodic dielectric construct whose photonic bandgap is engineered through variations of the optical thickness of its constituent layers. Traditionally the materials comprising these periodic dielectric layers are nonporous, and they have mainly been used in the field of optical and photonic devices. More recently these Bragg mirrors have been made porous by building the layers from nanoparticles with functionality and utility that exploit their internal voids. These structures are emerging in the area of photonic color-coded chemical sensing and controlled chemical release. Herein, a strategy for enhancing the functionality and potential utility of nanoparticle Bragg mirrors by making the constituent dielectric layers aperiodic and porous is described. It is exemplified by prototypical tandem and gradient structures that are fully characterized with regards to their structure, porosity, and optical and photonic properties.  相似文献   

2.
聚合物凝胶光子晶体及其对物理环境的响应   总被引:1,自引:0,他引:1  
文中简要介绍了物理响应性光子晶体的国内外研究动态。重点介绍以下几种物理响应性光子晶体:温度响应性光子晶体,溶剂响应性光子晶体,电场响应性光子晶体,磁场响应性光子晶体,机械力响应性光子晶体等。  相似文献   

3.
Electronic devices and their highly integrated components formed from semiconductor crystals contain complex three-dimensional (3D) arrangements of elements and wiring. Photonic crystals, being analogous to semiconductor crystals, are expected to require a 3D structure to form successful optoelectronic devices. Here, we report a novel fabrication technology for a semiconductor 3D photonic crystal by uniting integrated circuit processing technology with micromanipulation. Four- to twenty-layered (five periods) crystals, including one with a controlled defect, for infrared wavelengths of 3-4.5 microm, were integrated at predetermined positions on a chip (structural error <50 nm). Numerical calculations revealed that a transmission peak observed at the upper frequency edge of the bandgap originated from the excitation of a resonant guided mode in the defective layers. Despite their importance, detailed discussions on the defective modes of 3D photonic crystals for such short wavelengths have not been reported before. This technology offers great potential for the production of optical wavelength photonic crystal devices.  相似文献   

4.
We review recent efforts to make three‐dimensional semiconductor photonic crystals using self‐assembly techniques. These approaches, which utilize a synthetic opal as a template to shape the semiconductor material (see Figure), provide a simple and inexpensive alternative to lithographic methods. Since the resulting structures can, in principle, have a complete photonic bandgap – a property that would allow ultimate control over the flow of light – these materials may have serious implications for modern photonics.  相似文献   

5.
Abstract

Perovskite-type ferroelectric (FE) crystals are wide bandgap materials with technologically valuable optical and photoelectric properties. Here, versatile engineering of electronic transitions is demonstrated in FE nanofilms of KTaO3, KNbO3 (KNO), and NaNbO3 (NNO) with a thickness of 10–30 unit cells. Control of the bandgap is achieved using heteroepitaxial growth of new structural phases on SrTiO3 (001) substrates. Compared to bulk crystals, anomalous bandgap narrowing is obtained in the FE state of KNO and NNO films. This effect opposes polarization-induced bandgap widening, which is typically found for FE materials. Transmission electron microscopy and spectroscopic ellipsometry measurements indicate that the formation of higher-symmetry structural phases of KNO and NNO produces the desirable red shift of the absorption spectrum towards visible light, while simultaneously stabilizing robust FE order. Tuning of optical properties in FE films is of interest for nanoscale photonic and optoelectronic devices.  相似文献   

6.
Abstract

Based on the transfer matrix theory, general conditions of polarization-independent transmissions in one-dimensional photonic crystals are derived. It is shown that the polarization-independent transmissions are obtained in photonic crystals consisting of two alternating layers with the same refraction index and optical thickness as well as the mutually reciprocal wave impedance. By using two different photonic crystals satisfying the above relation to constitute the light quantum-well structures, the structures have polarization-independent transmission properties. When a defective layer with wave impedance of 1 is introduced in the photonic crystals, the defective photonic crystals also have the polarization-independent transmission properties. In addition, polarization-independent low-pass spatial filters are achieved based on these photonic crystal structures.  相似文献   

7.
Abstract

We propose a method for a systematic investigation of quasicrystal-related approximant structures in view of photonic bandgap applications. A detailed study is presented in the case of approximants formed by dielectric cylinders and constructed from a two-dimensional quasiperiodic lattice with octagonal symmetry. We show that isotropic photonic bandgaps are obtained even for the lowest order approximants generated by successive hyperspace shear. The main Fourier components of the dielectric function, responsible for the first photonic bandgap opening, are derived from the main component set of the quasiperiodic lattice. The magnitudes of the corresponding Brillouin zone vectors are shown to be directly related to the average distance between the planes passing by the dielectric cylinders. In other words, the approximant gap position is rather determined by the fundamental lattice parameters common to the quasiperiodic and approximant structures than by the approximant period. We also show that structure point symmetry is not indispensable for the band gap opening.  相似文献   

8.
Abstract

We investigate in this paper different aspects of the absolute photonic bandgap (PBG) formation for a two-dimensional periodic dielectric structure. In particular we examine how the symmetry of the filling pattern in a periodic dielectric material influences the photonic gap parameters. We present the results of the calculations and discuss the existence of the absolute PBG, the maximization of its width as a function of the parameters of a two-dimensional dielectric crystal as well as the practical technological feasibility of these optimized structures.  相似文献   

9.
光子晶体的能带结构、潜在应用和制备方法   总被引:14,自引:0,他引:14  
光子晶体是指具有光子能带和能隙的一类新型材料,它具有奇特的调节光子传播状态的特性.本文将从光子晶体的能带结构、潜在应用和制备方法三方面对其进行综述性介绍.由于光子晶体有着非常广阔的应用前景,这一领域已成为当今世界范围内的研究热点.  相似文献   

10.
Abstract

Sandwich structures, constructed from a planar defect of rhodamine-B (RhB)-doped titania (TiO2) and two photonic crystals, were synthesized via the self-assembly method combined with spin-coating. The modification of the spontaneous emission of RhB molecules in such structures was investigated experimentally. The spontaneous emission of RhB-doped TiO2 film with photonic crystals was reduced by a factor of 5.5 over a large bandwidth of 13% of the first-order Bragg diffraction frequency when compared with that of RhB-doped TiO2 film without photonic crystals. The angular dependence of the modification and the photoluminescence lifetime of RhB molecules demonstrate that the strong and wide suppression of the spontaneous emission of the RhB molecules is due to the presence of the photonic band gap.  相似文献   

11.
Abstract

In this study, we analyse the evolution of complete photonic band gap in two-dimensional photonic structures by arranging the 12-fold symmetric quasicrystalline unit cells on square and triangular lattices. The unit cells composed of circular air holes in anisotropic tellurium background and the air holes are infiltrated with liquid crystal. Using the supercell method based on plane wave expansion, we study the variation of complete band gap by changing the optical axis orientation of liquid crystals.  相似文献   

12.
Abstract

We calculate the nonlinear phase shift acquired by a laser beam in propagating through a one-dimensional photonic bandgap material, that is a material in which the linear refractive index is periodically modulated along the direction of propagation. We find that the nonlinear phase shift shows resonances for laser frequencies close to the edge of the stop band of the photonic bandgap structure. Enhancements of the nonlinear phase shift compared with that of a homogeneous nonlinear optical material by a factor of approximately five are predicted under realistic laboratory conditions. We find that similar enhancements of the two-photon absorption rate can occur for a material with an imaginary nonlinear susceptibility. We also treat the case of a photonic bandgap material containing a ′defect,' that is a central region somewhat too thick to conform to the periodicity of the system, and find that the nonlinear phase shift can be enhanced by a factor of approximately thirty.  相似文献   

13.
A thermodynamically driven self-organization of microclusters of semiconductor nanocrystals with a narrow size distribution into periodic two-dimensional (2D) arrays is an attractive low-cost technique for the fabrication of 2D photonic crystals. We have found that CdSe/ZnS core/shell quantum dots or quantum rods, transferred in aqueous phase after capping with the bifunctional surface-active agent DL-cysteine, form on a poly-L-lysine coated surface homogeneously sized micro-particles, droplet-like spheroid clusters and hexagon-like colloidal crystals self-organized into millimetre-sized 2D?hexagonal assemblies. The presence of an organic molecular layer around the micro-particles prevents immediate contact between them, forming an interstitial space which may be varied in thickness by changing the origin of the molecular layer capping nanocrystals. Due to the high refractive index of CdSe and the low refractive index of the interstitial spaces, these structures are expected to have deep gaps in their photonic band, forming hierarchically ordered 2D arrays of potentially photonic materials.  相似文献   

14.
Perovskite-type ferroelectric (FE) crystals are wide bandgap materials with technologically valuable optical and photoelectric properties. Here, versatile engineering of electronic transitions is demonstrated in FE nanofilms of KTaO3, KNbO3 (KNO), and NaNbO3 (NNO) with a thickness of 10–30 unit cells. Control of the bandgap is achieved using heteroepitaxial growth of new structural phases on SrTiO3 (001) substrates. Compared to bulk crystals, anomalous bandgap narrowing is obtained in the FE state of KNO and NNO films. This effect opposes polarization-induced bandgap widening, which is typically found for FE materials. Transmission electron microscopy and spectroscopic ellipsometry measurements indicate that the formation of higher-symmetry structural phases of KNO and NNO produces the desirable red shift of the absorption spectrum towards visible light, while simultaneously stabilizing robust FE order. Tuning of optical properties in FE films is of interest for nanoscale photonic and optoelectronic devices.  相似文献   

15.
Manipulation of light is in strong demand in information technologies. Among the wide range of linear and nonlinear optical devices that have been used, growing attention has been paid to photonic crystals that possess a periodic modulation of dielectric function. Among many photonic bandgap (PBG) structures, liquid crystals with periodic structures are very attractive as self-assembled photonic crystals, leading to optical devices such as dye lasers. Here we report a new hetero-PBG structure consisting of an anisotropic nematic layer sandwiched between two cholesteric liquid-crystal layers with different helical pitches. We optically visualized the dispersion relation of this structure, displaying the optical diode performance: that is, the non-reciprocal transmission of circular polarized light at the photonic-bandgap regions. Transmittance spectra with circularly polarized light also reveal the diode performance, which is well simulated in calculations that include an electro-tunable diode effect. Lasing action was also confirmed to show the diode effect with a particular directionality.  相似文献   

16.
The use of secondary mirrors in solar energy concentration is common. However, high concentrated solar radiation heats these mirrors thereby degrading their physical properties. In particular, aluminum mirrors melt because of high temperature due to storage by high radiative heat transfer. In contradistinction photonic crystals could present “perfect reflection” and they can be fabricated using porous silicon which has a higher melting point than aluminum (porous silicon has a melting point higher than 900 K). Porous silicon is a nanostructured semiconductor material which can be fabricated with different porosities and refractive indices. Multilayers of alternating periodic refractive index conform the structure of these photonic crystals. The light that propagates in these structures interacts with its periodic refractive index that generates wavelength gaps of forbidden transmission and so these multilayers conform a mirror. Even these photonic structures are heated when they are exposed to high concentrated solar radiation. In this work we experimentally analyze this heating process and model it using an effective medium approach to explain the increasing temperature behavior.  相似文献   

17.
We study the variation of the energy absorption rate in a hybrid semiconductor quantum dot-metallic nanoparticle system doped in a photonic crystal. The quantum dot is taken as a three-level V-configuration system and is driven by two applied fields (probe and control). We consider that one of the excitonic resonance frequencies is near to the plasmonic resonance frequency of the metallic nanoparticle, and is driven by the probe field. The other excitonic resonance frequency is far from both the plasmonic resonance frequency and the photonic bandgap edge, and is driven by the control field. In the absence of the photonic crystal we found that the system supports three excitonic-induced transparencies in the energy absorption spectrum of the metallic nanoparticle. We show that the photonic crystal allows us to manipulate the frequencies of such excitonic-induced transparencies and the amplitude of the energy absorption rate.  相似文献   

18.
The photonic crystal structure with parallelogram lattice, capable of bending a self-collimated wave with free angles and partial bandgap reflection, is presented. The equifrequency contours show that the direction of the collimation wave can be turned by tuning the angle between the two basic vectors of the lattice. Acute, right, and obtuse angles of collimating waveguide bends have been realized by arc lattices of parallelogram photonic crystals. Moreover, partial bandgap reflection of the parallelogram lattice photonic crystals is validated from the equifrequency contours and the projected band structures. A waveguide taper based on this partial bandgap reflection is also designed and proved to have above 85% transmittance over a very wide operating bandwidth of 180 nm.  相似文献   

19.
Abstract

We examine the photonic band structure of two-dimensional (2D) arrays of dielectric holes using the coherent microwave transient spectroscopy (COMITS) technique. Such 2D hole arrays are constructed by embedding low-index rods (air) in a dielectric background of higher-index Stycast material (n = 3·60). The dispersion relation for electromagnetic wave propagation in these photonic crystals is directly determined using the phase sensitivity of COMITS. We find that both the square and triangular lattice structures exhibit photonic band gaps that are common to both polarizations for all wave-vectors along major symmetry axes. In addition, the connectivity of the high-index dielectric and the opening of a large gap for propagation with E field perpendicular to the hole cylinders are found to be important criteria for generating a large absolute photonic band gap.  相似文献   

20.
Arranging periodic, or quasi-periodic, regions of differing refractive index in one, two, or three dimensions can form a unique class of mesoporous structures. These structures are generally known as photonic crystals, or photonic quasicrystals, and they are the optical analogue of semiconducting materials. Whereas a semiconductor's band structure arises from the interaction of electron or hole waves with an arrangement of ion cores, the photonic crystal band structure results from the interaction of light waves with an arrangement of regions of differing refractive index.What makes photonic crystals highly attractive to the optical engineer is that we can actually place the regions of differing refractive index in a pattern specifically tailored to produce a given optical function, such as an extremely high dispersion, for example. That is, we can define the geometrical arrangement of the dielectric foam to provide us with the form of band structure we require for our optical functionality.In this paper, the optical properties and applications of these highly engineered mesoporous dielectrics will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号