首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
Cu/(10NiO-NiFe2O4) cermets containing mass fractions of Cu of 5%, 10%, 15% and 20% were prepared, and their electrical conductivities were measured at different temperatures. The effects of temperature and content of metal Cu on the electrical conductivity were investigated especially. The results indicate that the metallic phase Cu distributes evenly in 10NiO-NiFe2O4 ceramic matrix. The mechanism of electrical conductivity of Cu/(10NiO-NiFe2O4) cermets obeys the rule of electrical mechanism of semiconductor, the electrical conductivity for cermet containing 5% Cu increases from 2.70 to 20.41 S/cm with temperature increasing from 200 to 900 ℃. The change trend of electrical conductivity with temperature is similar with each other and it increases with increasing temperature and content of metal Cu. At 960 ℃, the electrical conductivity of cermet increases from 2.88 to 82.65 S/cm with the content of metal Cu increasing from 0 to 20%.  相似文献   

3.
Na3AlF6—5%Al2O3熔体对铝电解机械掺杂碳阳极的润湿性研究   总被引:1,自引:0,他引:1  
采用机械掺杂法制备了掺有不同复合氧化物粉末的碳阳极,并测试了熔融状态下NA3AlF6-5%Al2O3熔体对不同掺杂电极的润湿性,实验结果表明,掺有LiAlO3和CaAl2O4的碳阳极对熔盐显示了较好的润湿性。  相似文献   

4.
用等温饱和法研究了金属铝在KF-LiF-Na3AlF6-Al2O3体系中的溶解过程,实验结果表明:体系温度980℃,分子比(n(NaF)/n(AlF3))=2.3时,溶解度随着钾盐和锂盐含量的增加而增大;钾盐和锂盐质量分数分别为7%时,铝的溶解度(质量分数)分别达到0.148%和0.242%,并且锂盐比钾盐对铝溶解度影响大;钾盐和锂盐共同作用时,铝的溶解度达到0.421%.采用多元回归分析法对铝溶解度与钾盐、锂盐、分子比之间的关系进行研究,得到回归方程为Y=-0.125+1.962x1+3.456x2+0.090x3  相似文献   

5.
对于 CaO- SiO2- Fe2O3- MnO2- MgO- P2O5系熔剂,采用添加剂( Li2O BaO Na2O K2O)分别替代熔剂中部分 CaO,测定添加剂对实验熔剂熔点的影响关系。结果表明,添加剂的加入均具有降低熔剂熔点的效果,其熔点降低效果的强弱顺序为: Li2O>BaO>Na2O>K2O。在 w(添加剂 )≤ 25%范围内,随着加入量的增大, Li2O、 BaO使熔剂熔点不断降低,而添加 Na2O、 K2O的熔剂熔点发生异常变化。根据实验结果,推荐 Li2O作为 CaO基熔剂的添加剂。当熔剂中: w( CaO+ Li2O) /w( SiO2)≤ 2.5, w( Li2O)≥ 5%, w( Fe2O3)≥ 5%时,熔剂熔点≤ 1 384℃。  相似文献   

6.
The single-phrase Ba(Mgl/3Nb2/3)O3(BMN) powder was saccessfully prepared by the KCImolten salt synthesis(MSS) method. The temperature for single-phase BMN powders by MSS was about 400℃ lower than that by the solid-phase method. The average particle size (APS) was about 0.91,u.m at 900℃ and increased with increasing synhesis temperature. Based on the APS, the activation energy for particle growth in theMSS, whose value was 64. 1kJmol^-1.was attained. The sinterability of the powder prepared by MSS method wasbetter than that pretared by solid-phase method.  相似文献   

7.
8.
The CaO-doped Cu/(NiFe2O4-10NiO) cermet inert anodes were prepared by the cold isostatie pressing-sintering process, and their corrosion resistance to Na3AlF6-K3AlF6-Al203 melt was studied. The results show that the relative density of 5Cu/(NiFe2O4-10NiO) cermet sintered at 1 200 ℃ increases from 82.83% to 97.63% when 2% CaO (mass fraction) is added. During the electrolysis, the relative density of cermet inert anode descends owing to the chemical dissolution of additive CaO at ceramic grain boundary, which accelerates the penetration of electrolyte. Thus, the corrosion resistance to melts of Cu/(NiFe2O4-10NiO) cermet inert anode is reduced. To improve the corrosion resistance of the cermet inert anode, the content of CaO doped should be decreased and the technology of cleaning the ceramic grain boundary should be applied.  相似文献   

9.
The ZrO2 (9mol% Y2O3) coating was prepared evenly on the surface of MgO partially stabilized zirconia (Mg-PSZ) tube (oxygen sensor probe) by dipping the green Mg-PSZ tube in a ZrO2, (9mol% Y2O3) slurry and then co-firing at 1750℃ for 8 h. The double-cell method was employed to measure the electronic conductivity parameter and exam the reproducibility of the coated Mg-PSZ tube. The experimental results indicate that the good thermal shock resistance of the Mg-PSZ tube can be retained when the coating thickness is not more than 3.4μm. The ZrO2 (9mol% Y2O3) coating reduces the electronic conductivity parameter remarkably. probably due to the lower electronic conductivity of Y2O3-stabilized ZrO2 than that of MgO-stabilized ZrO2. Moreover, the ZrO2(9mol% Y2O3) coating can improve the reproducibility and accuracy of the Mg-PSZ tube significantly in the low oxygen measurement. The smooth surface feature and lower electronic conductivity of the coated Mg-PSZ tube should be responsible for this improvement.  相似文献   

10.
Fine Al(OH)3 crystals were aggregated from supersaturated aluminate solution in the batch reaction tanks. By means of laser particle size analyzer and scanning electron microscopy, the influences of temperature and initial molar ratio of Na2O to Al2O3 (aK) on agglomeration of fine seed in Bayer process were investigated. The results show that agglomeration is almost finished in 8 h, and seeds with size less than 2 μm are easily aggregated together, and almost disappear in 8 h under the optimal process conditions. In the aluminate solution with the same moderate initial aK, when the reaction temperature reaches 75 ℃, the secondary nucleation does not occur, and the effect of agglomeration is better. And at the same reaction temperature, when the initial aK is 1.62, the initial supersaturation of aluminate solution is moderate, the binders on the surfaces of the seed are enough to maintain the agglomeration process, and the agglomeration degree is better. From SEM images, agglomeration mainly occurs in the fine particles, the combinations among the fine particles are loose and the new formed coarse crystal shapes are irregular.  相似文献   

11.
The effects of contents of AlF3 and Al2O3,and temperature on electrical conductivity of (Na3AlF6-40%K3AlF6)-AlF3-Al2O3 were studied by continuously varying cell constant (CVCC) technique.The results show that the conductivities of melts increase with the increase of temperature,but by different extents.Every increasing 10 ℃ results in an increase of 1.85×10-2,1.86×10-2,1.89×10-2 and 2.20×10-2 S/cm in conductivity for the (Na3AlF6-40%K3AlF6)-AlF3 melts containing 0%,20%,24%,and 30% AlF3,respectively.An increase of every 10 ℃ in temperature results an increase about 1.89×10-2,1.94×10-2,1.95×10-2,1.99×10-2 and 2.10×10-2 S/cm for (Na3AlF6-40%K3AlF6)-AlF3-Al2O3 melts containing 0%,1%,2%,3% and 4% A12O3,respectively.The activation energy of conductance was calculated based on Arrhenius equation.Every increasing 1% of AlF3 results in a decrease of 0.019 and 0.020 S/cm in conductivity for (Na3AlF6-40%K3AlF6)-AIF3 melts at 900 and 1 000 ℃,respectively.Every increase of 1% Al2O3 results in a decrease of 0.07 S/cm in conductivity for (Na3AlF6-40%K3AlF6)-AlF3-Al2O3 melts.The activation energy of conductance increases with the increase in content of AlF3 and Al2O3.  相似文献   

12.
The electrolysis expansion of semigraphitic cathode in [K3AlF6/Na3AlF6]-AlF3-Al2O3 bath system was tested by self-made modified Rapoport apparatus. A mathematical model was introduced to discuss the effects of α CR (cryolite ratio) and β KR (elpasolite content divided by the total amount of elpasolite and sodium cryolite) on performance of cathode electrolysis expansion. The results show that K and Na (potassium and sodium) penetrate into the cathode together and have an obvious influence on the performance of cathode electrolysis expansion. The electrolysis expansion and K/Na penetration rate increase with the increase of α CR. When α CR=1.9 and β KR=0.5, the electrolysis expansion is the highest, which is 3.95%; and when α CR=1.4 and β KR=0.1, the electrolysis expansion is the lowest, which is 1.28%. But the effect of β KR is correlative with α CR. When α CR=1.6 and 1.9, with the increase of β KR, the electrolysis expansion and K/Na penetration rate increase. However, when α CR=1.4, the electrolysis expansion and K/Na penetration rate firstly increase and then decrease with the increase of β KR. Foundation item: Project (2005CB623703) supported by the Major State Basic Research and Development Program of China; Project (2008AA030502) supported by the National High-Tech Research and Development Program of China  相似文献   

13.
5Cu/(10NiO-NiFe2O4) cermet inert anodes were prepared by cold-pressing and sintering process, and the effect of superheat degree of melting K3AlF6-Na3AlF6-AlF3 on their anticorrosion performance was studied under electrolysis conditions. The results show that, the fluctuation of cell becomes small with increasing of superheat degree, which is helpful to inhibit the formation of cathodic encrustation; the concentration of impurities from inert anode in bath goes up to certain degree, but it is far smaller than those in traditional high-temperature bath. Increasing the superheat degree of melting K3AlF6-Na3AlF6-AlF3 has unconspicuous effect on the contents of impurities in cathodic aluminum. The total mass fractions of Fe, Ni and Cu in aluminum are 15.38% and 15.09% respectively under superheat degree of 95 and 195 ℃. From micro-topography of anode used view, increasing the superheat degree can aggravate corrosion of metal Cu in inert anode, and has negative influence on electrical conductivity of electrode to some extent.  相似文献   

14.
1INTRODUCTIONThere are many disadvantages in the presentHall-Heroult electrolytic process[1],such as highenergy consumption,low unit productivity and se-rious environmental pollution and so on,especiallythe high energy consumption of per ton alumin-ium,which ranges from13MW·h to15MW·h,and the energy efficiency is less than50%[2].Therefore,low-energy consumption aluminumre-duction cell has been a research focus for interna-tional aluminum companies and institutes.Thedrained cathode cel…  相似文献   

15.
采用机械球磨加固相烧结法合成Mn3(Cu0.6Si0.15Ge0.25)N/Ag复合材料。在77K-300K温度范围内,分别研究了Mn3(Cu0.6Si0.15Ge0.25)N/Ag复合材料的热膨胀性能,电导性能和热导性能。当含Ag量分别为1,5,10和20 wt%时,所有样品在有效的温度区间205K-275K表现出负热膨胀。随着Ag含量的增加,有效温度区间向室温方向移动。另外,和Mn3(Cu0.6Si0.15Ge0.25)N材料相比,Mn3(Cu0.6Si0.15Ge0.25)N/Ag复合材料具有更高的电导率1?0-6(Ohm.m)-1和热导率10.5W/(mK)。  相似文献   

16.

铝元素在地壳中的储量丰富,来源广泛,并且金属铝的安全性高,在离子电池领域中具有广阔的应用前景.尽管铝金属在离子电池中具有如此诱人的优势,但铝离子电池的能量密度、稳定性以及所使用的电解液安全性和成本依然制约其发展.对铝离子电池的最新工作进行梳理、分析和总结,并进一步探讨其作为新型储能体系的机遇和挑战.主要从正极材料、电解液及铝金属负极3个方面对近期的铝离子电池相关工作进行了总结,为开展高能量密度、高稳定性铝离子电池的研究奠定基础.

  相似文献   

17.
SiO 2-Al2O3/EP-PU nanocomposites, which contained polyurethane(PU) flexible chain, were prepared via epoxy resin, PU and modified silica and alumina particles. Silica and alumina particles were modified by coupling agents KH-560 and KH550, respectively. EP-PU was used as matrix, PU as toughening agent, Si O2-Al2O3 as filled and MTHPA as curing agent. The mass ratio of PU was 30% in this system. The chemical structure of the products was confirmed by FT-IR measurements, the morphological structure of fracture surface and the surface of the hybrid materials were observed by scanning electron microscope(SEM) and transmission electron microscope(TEM), and shearing strength and breakdown field were measured, respectively. When the mass fraction of inorganic component was 10% and the mass ratio of Si O2 to Al2O3 was 4.5:5.5, shearing strength of Si O2-Al2O3/EP-PU was 28.5 MPa and breakdown field was 15 k V/mm, the data could meet the property requirement of insulating material.  相似文献   

18.
The effects of CaO content in the range from 0 to 4.0%, and sintering temperature on the phase composition, relative density and electrical conductivity of 10NiO-NiFe2O4 composites doped with CaO were studied. The results show that there is no change of structure for NiO or NiFe2O4; there is apparent oxygen absorbing and releasing behavior during the heating process in air for 10NiO-NiFe2O4 composites. Introduction of CaO can accelerate the densification of 10NiO-NiFe2O4 composites. The maximum value of relative density is 98.75% for composite doped with 2.0% CaO and sintered at 1 200 ℃, which is beyond about 20% for the undoped composites. The sintering activated energy of sample containing 2% CaO decreases by 15.87 kJ/mol, compared with that of the undoped sample.  相似文献   

19.
Vaporization behavior (1163–1463 K) of lead in the slag system of FeO-CaO-SiO2-Al2O3 with CaCl2 was examined. A thermodynamic estimation with the principle of Gibbs free energy minimization showed that the major vapor species from the sample of the FeO-CaO-SiO2-Al2O3 system+PbO+CaCl2 were metallic Pb, PbCl, PbCl2, and FeCl2, at the experimental temperature range. The experimental results show that the mole ratio of vaporized Cl in lead chlorides to vaporized Pb, simply expressed as Cl/Pb, decreases with increasing temperature. The larger Cl/Pb means a larger ratio of gaseous PbCl2, since metallic Pb and PbCl vapors are formed in a similar reduction atmosphere. The evaporation is initially rapid and becomes steady after holding for 10 min. Gaseous PbCl2 is mainly formed during the heating period, and at the holding stage, it reacts with FeO to produce gaseous FeCl2. With regard to slag composition, FeO content and basicity significantly affect the evaporation of lead. High FeO content and high basicity promotes the formation of metallic Pb and PbCl, whereas, it prohibits PbCl2 evaporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号