首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
温差电材料热导率的激光脉冲测试法   总被引:2,自引:0,他引:2  
Wil.  SGK 高敏 《红外技术》1993,15(6):9-14
简要地介绍了热导率激光脉冲法的测量原理和实际装置,着重对该方法在半导体温差电材料热导率测试中的问题和解决途径进行了详细的讨论。  相似文献   

2.
We report wet chemical synthesis of a hierarchical nanocomposite thermoelectric material, (Bi,Sb)2Te3 + 2 vol.% Sb2O3, which exhibits a very high ZT value of 1.5 at 333 K. The key to such a high ZT value is to design the interfacial density (ID) of the nanodispersion and the mean diameter of the matrix (d) in the nanocomposite. To this end, (Bi,Sb)2Te3 with Sb2O3 nanodispersion was developed using in situ precipitation during solvothermal treatment. Nanocomposite structure was observed in sintered specimens. By evaluation of thermoelectric properties, it was confirmed that phonon scattering on the surface of Sb2O3 dispersion and κ ph correspondingly decreased with ID. The formation of a well-controlled Sb2O3 dispersion (mean diameter of dispersion: D = 1.5 nm, ID = 0.06 nm?1) and fine grains (d = 38 nm) led to an extremely low lattice thermal conductivity of 0.28 W m?1 K?1, while reducing the electrical conductivity moderately according to the conventional mixture rule.  相似文献   

3.
Thermoelectric materials, for example skutterudites and magnesium silicides, are being investigated as promising materials for medium-to-high-temperature waste heat recovery in transport and in industry. A crucial aspect of the success of a thermoelectric material is its stability over time when exposed to rapid heating and cooling. In this work different aspects of the degradation of these thermoelectric materials at high temperature were examined. Initial thermal durability was studied, and several candidate coatings were evaluated to enhance durability by protecting the materials from oxidation and sublimation during thermal cycles in air for up to 500 h and up to 873 K. The samples were characterized by SEM and EDS. The results showed it is possible to reduce degradation of the thermoelectric material without compromising overall thermoelectric efficiency.  相似文献   

4.
The reduction of thermal conductivity, and a comprehensive understanding of the microstructural constituents that cause this reduction, represent some of the important challenges for the further development of thermoelectric materials with improved figure of merit. Model PbTe‐based thermoelectric materials that exhibit very low lattice thermal conductivity have been chosen for this microstructure–thermal conductivity correlation study. The nominal PbTe0.7S0.3 composition spinodally decomposes into two phases: PbTe and PbS. Orderly misfit dislocations, incomplete relaxed strain, and structure‐modulated contrast rather than composition‐modulated contrast are observed at the boundaries between the two phases. Furthermore, the samples also contain regularly shaped nanometer‐scale precipitates. The theoretical calculations of the lattice thermal conductivity of the PbTe0.7S0.3 material, based on transmission electron microscopy observations, closely aligns with experimental measurements of the thermal conductivity of a very low value, ~0.8 W m?1 K?1 at room temperature, approximately 35% and 30% of the value of the lattice thermal conductivity of either PbTe and PbS, respectively. It is shown that phase boundaries, interfacial dislocations, and nanometer‐scale precipitates play an important role in enhancing phonon scattering and, therefore, in reducing the lattice thermal conductivity.  相似文献   

5.
Thermal conductivity is one of the most fundamental properties of solid materials. The thermal conductivity of ideal crystal materials has been widely studied over the past hundreds years. On the contrary, for amorphous materials that have valuable applications in flexible electronics, wearable electrics, artificial intelligence chips, thermal protection, advanced detectors, thermoelectrics, and other fields, their thermal properties are relatively rarely reported. Moreover, recent research indicates that the thermal conductivity of amorphous materials is quite different from that of ideal crystal materials. In this article, the authors systematically review the fundamental physical aspects of thermal conductivity in amorphous materials. They discuss the method to distinguish the different heat carriers (propagons, diffusons, and locons) and the relative contribution from them to thermal conductivity. In addition, various influencing factors, such as size, temperature, and interfaces, are addressed, and a series of interesting anomalies are presented. Finally, the authors discuss a number of open problems on thermal conductivity of amorphous materials and a brief summary is provided.  相似文献   

6.
详细介绍了四极法、“线—框”法、场强比测试法等大地导电率的测定方法,最后给出了计算实例。  相似文献   

7.
The thermoelectric compound (GeTe)x(AgSbTe2)1?x, in short (TAGS‐x), is investigated with a focus on two stoichiometries, i.e., TAGS‐50 and TAGS‐85. TAGS‐85 is currently one of the most studied thermoelectric materials with great potential for thermoelectric applications. Yet, surprisingly, the lowest thermal conductivity is measured for TAGS‐50, instead of TAGS‐85. To explain this unexpected observation, atom probe tomography (APT) measurements are conducted on both samples, revealing clusters of various compositions and sizes. The most important role is attributed to Ag2Te nanoprecipitates (NPs) found in TAGS‐50. In contrast to the Ag2Te NPs, the matrix reveals an unconventional bond breaking mechanism. More specifically, a high probability of multiple events (PME) of ≈60% is observed for the matrix by APT. Surprisingly, the PME value decreases abruptly to ≈20–30% for the Ag2Te NPs. These differences can be attributed to differences in chemical bonding. The precipitates' PME value is indicative of normal bonding, i.e., covalent bonding with normal optical modes, while materials with this unconventional bond breaking found in the matrix are characterized by metavalent bonding. This implies that the interface between the metavalently bonded matrix and covalently bonded Ag2Te NP is partly responsible for the reduced thermal conductivity in TAGS‐50.  相似文献   

8.
A primary challenge still exists in the field of thermoelectric generators (TEG) for practical applications in which a thermal system of the TEG is a crucial factor in TEG power generation. The material development for TEG has contributed significantly towards advancement in TEG applications over a decade, the need for a thermal system configuration is inevitable considering the applications. The thermal efficiency of TEG depends upon the temperature difference across its modules (between the hot and cold surfaces). Thermal design of the thermoelectric system is important to ensure that there exists a maximum temperature difference across the hot and cold surfaces of the TEG. Thermal Interface Material (TIM) in thermoelectric systems plays a main role in improving the efficiency of thermoelectric systems by reducing the temperature difference between the heat source and the hot surface of the TEG and similarly, the temperature difference between the cold surface of TEG and the heat sink. This review paper predominantly focuses on the thermal interfaces between the TEG modules which reduces the performance of a thermoelectric system. The characteristics of TIM in a TEG system (contact pressure, surface roughness and thermal conductivity) were analyzed with a mathematical model to emphasize the importance of TIM in a TEG system. This paper also highlights the existing challenges for Thermal Interface Materials in TEG applications and concludes with a brief discussion on future directions of TIM in TEG thermal systems.  相似文献   

9.
A tool for evaluating thin-film thermal conductivity to submicron spatial resolution has been developed. The micro-instrumentation utilizes the thermoreflectance (TR) technique to characterize thermal conductivity and material uniformity. The instrument consists of a heating element for creating temperature gradients and an Invar bar with in?situ temperature monitoring for heat flux measurements. The thin-film sample is sandwiched between the heater and Invar bar while a microscope is used to direct light onto a cross-section of the sample and reflected light is collected with a camera. By using this technique, we can achieve submicron spatial resolution for thermal conductivity and eliminate contributions from thermal contact resistance, thereby also eliminating the need for sample preparation other than cleaving. The method offers temperature resolution of 10?mK, spatial resolution of 200?nm, and thermal conductivity measurement with 0.01?±?0.001?W/mK resolution. The thermal conductivity of a 0.6% ErAs:InGaAlAs thermoelectric (TE) element, prepared by molecular beam epitaxy (MBE) growth, obtained with the new instrument is 2.3?W/mK, while the average thermal conductivity obtained with the 3-omega method is 2.5?W/mK. Energy-dispersive x-ray (EDX) spectroscopy is also used to prove that the elemental composition has uniformity consistent with the material variation observed by the TR technique. Moreover, a temperature profile across a 0.6% ErAs:InGaAlAs TE element on InP substrate is imaged. Two different slopes, corresponding to different thermal conductivities, have been observed, showing that the thermal conductivity of the TE element is lower than that of the InP substrate as expected.  相似文献   

10.
A new technique for measuring thermal conductivity with significantly improved accuracy is presented. By using the Peltier effect to counterbalance an imposed temperature difference, a completely isothermal, steady-state condition can be obtained across a sample. In this condition, extraneous parasitic heat flows that would otherwise cause error can be eliminated entirely. The technique is used to determine the thermal conductivity of p-type and n-type samples of (Bi,Sb)2(Te,Se)3 materials, and thermal conductivity values of 1.47?W/m?K and 1.48?W/m?K are obtained respectively. To validate this technique, those samples were assembled into a Peltier cooling device. The agreement between the Seebeck coefficient measured individually and from the assembled device were within 0.5%, and the corresponding thermal conductivity was consistent with the individual measurements with less than 2% error.  相似文献   

11.
在航天红外遥感应用中,地物目标光谱发射率是卫星遥感测量地面温度的一个重要参数。野外测量的大气环境、目标背景和地物的热力学特性等因素的影响,使得野外测量地物目标表面光谱发射率变得较为复杂。重点讨论了利用傅里叶变换红外光谱仪野外测量地物目标光谱发射率的方法和程序,介绍了几种正确分离目标温度与发射率的方法。野外测量实验结果表明,按照文中所述的测量方法,测量得到的地物热红外光谱发射率具有良好的一致性,发射率测量误差小于0.02。  相似文献   

12.
在航天红外遥感应用中,地物目标光谱发射率是卫星遥感测量地面温度的一个重要参数。野外测量的大气环境、目标背景和地物的热力学特性等因素的影响,使得野外测量地物目标表面光谱发射率变得较为复杂。重点讨论了利用傅里叶变换红外光谱仪野外测量地物目标光谱发射率的方法和程序,介绍了几种正确分离目标温度与发射率的方法。野外测量实验结果表明,按照文中所述的测量方法,测量得到的地物热红外光谱发射率具有良好的一致性,发射率测量误差小于0.02。  相似文献   

13.
Step-by-step control is very important in the manufacturing of thermoelectric generators and cooling modules. Of key importance is quality control of thermoelectric material rods, and discs cut from such rods. This work describes two installations for measuring the Seebeck coefficient, electrical conductivity, and thermal conductivity of rods, as well as for measuring the Seebeck coefficient and electrical conductivity of discs. It is established that using such devices in the practice of manufacture of cooling modules enables enhancement of module quality and reduction of material waste by 7% to 15%.  相似文献   

14.
Radioisotope thermoelectric generators (RTGs) generate electrical power by converting the heat released from the nuclear decay of radioactive isotopes (typically plutonium-238) into electricity using a thermoelectric converter. RTGs have been successfully used to power a number of space missions and have demonstrated their reliability over an extended period of time (tens of years) and are compact, rugged, radiation resistant, scalable, and produce no noise, vibration or torque during operation. System conversion efficiency for state-of-practice RTGs is about 6% and specific power ≤5.1 W/kg. A higher specific power would result in more onboard power for the same RTG mass, or less RTG mass for the same onboard power. The Jet Propulsion Laboratory has been leading, under the advanced thermoelectric converter (ATEC) project, the development of new high-temperature thermoelectric materials and components for integration into advanced, more efficient RTGs. Thermoelectric materials investigated to date include skutterudites, the Yb14MnSb11 compound, and SiGe alloys. The development of long-lived thermoelectric couples based on some of these materials has been initiated and is assisted by a thermomechanical stress analysis to ensure that all stresses under both fabrication and operation conditions will be within yield limits for those materials. Several physical parameters are needed as input to this analysis. Among those parameters, the coefficient of thermal expansion (CTE) is critically important. Thermal expansion coefficient measurements of several thermoelectric materials under consideration for ATEC are described in this paper. The stress response at the interfaces in material stacks subjected to changes in temperature is discussed, drawing on work from the literature and project-specific tools developed here. The degree of CTE mismatch and the associated effect on the formation of stress is highlighted.  相似文献   

15.
Titania embedded with layer-cracking nanostructures (sodium titanate) was synthesized by a hydrothermal method and a subsequent sintering process. The structure and morphology were determined by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption–desorption experiments. In thermoelectric investigations, this nanocomposite has reduced thermal conductivity, where the minimum reaches about 2.4 W/m K at 700°C. This value is relatively low among the transition-metal oxides. Strong boundary scattering at the interfaces of the layered nanostructures and point defect scattering resulting from volatilization of Na+ ions seem to be main reasons for the suppression of phonon heat transfer. On the other hand, the power factor shows no apparent deterioration. Our results suggest that introduction of proper layer-cracking nanostructures into thermoelectric hosts might be effective to enhance their performance.  相似文献   

16.
Transmission electron microscopy studies show that a PbTe‐BaTe bulk thermoelectric system represents the coexistence of solid solution and nanoscale BaTe precipitates. The observed significant reduction in the thermal conductivity is attributed to the enhanced phonon scattering by the combination of substitutional point defects in the solid solution and the presence of high spatial density of nanoscale precipitates. In order to differentiate the role of nanoscale precipitates and point defects in reducing lattice thermal conductivity, a modified Callaway model is proposed, which highlights the contribution of point defect scattering due to solid solution in addition to that of other relevant microstructural constituents. Calculations indicate that in addition to a 60% reduction in lattice thermal conductivity by nanostructures, point defects are responsible for about 20% more reduction and the remaining reduction is contributed by the collective of dislocation and strain scattering. These results underscore the need for tailoring integrated length‐scales for enhanced heat‐carrying phonon scattering in high performance thermoelectrics.  相似文献   

17.
The nanostructuring approach has significantly contributed to the improving of thermoelectric figure‐of‐merit (ZT) by reducing lattice thermal conductivity. Even though it is an effective method to enhance ZT, the drastically lowered thermal conductivity in some cases can cause thermomechanical issues leading to decreased reliability of thermoelectric generators. Here, an engineering thermal conductivity (κeng) is defined as a minimum allowable thermal conductivity of a thermoelectric material in a module, and is evaluated to avoid thermomechanical failure and thermoelectric degradation of a device. Additionally, there is dilemma of determining thermoelectric leg length: a shorter leg is desired for higher W kg?1, W cm?3, and W The nanostructuring approach has significantly contributed to the improving of thermoelectric figure‐of‐merit (ZT) by reducing lattice thermal conductivity. Even though it is an effective method to enhance ZT, the drastically lowered thermal conductivity in some cases can cause thermomechanical issues leading to decreased reliability of thermoelectric generators. Here, an engineering thermal conductivity (κeng) is defined as a minimum allowable thermal conductivity of a thermoelectric material in a module, and is evaluated to avoid thermomechanical failure and thermoelectric degradation of a device. Additionally, there is dilemma of determining thermoelectric leg length: a shorter leg is desired for higher W kg?1, W cm?3, and W $?1, but it raises the thermomechanical vulnerability issue. By considering a balance between the thermoelectric performance and thermomechanical reliability issues, it is discussed how to improve device reliability of thermoelectric generators and the engineering thermal conductivity of thermoelectric materials.  相似文献   

18.
Organic thermoelectric (OTE) materials promise convenient energy conversion between heat gradients and voltage with flexible and wearable power-supplying devices at a low price. Although a variety of OTE materials are investigated, the TE performance is still far from practical application. To achieve high TE performance, a thorough understanding of the structure–property relationship in OTE materials is necessary. In this comprehensive review, the fundamentals of OTEs are summarized, the recent achievements of OTE materials are reviewed, and the relationship between structure and properties in high-performance OTE materials is discussed. Furthermore, how the molecular backbones, side chains, energy levels, molecular packing, and heteroatom effect all play vital roles in thermoelectric properties is addressed. Finally, the future direction of research on OTE materials is envisaged.  相似文献   

19.
高热导率陶瓷材料的进展   总被引:19,自引:5,他引:14  
叙述了在电子器件上常用高热导率陶瓷材料的性能和应用,主要包括BeO,BN,AIN等三种陶瓷材料。特别介绍了AIN陶瓷的发展前景及其最新应用。  相似文献   

20.
Thermoelectric properties of molybdenum selenides containing Mo9 clusters have been investigated between 300 K and 800 K. Ag x Mo9Se11 (x = 3.4 and 3.8) have been synthesized by solid-state reaction and spark plasma sintering. X-ray diffraction and scanning electron microscopy reveal high purity and good homogeneity of the samples. The thermoelectric power of the samples is positive over the whole investigated temperature range, indicating that the majority of charge carriers are holes. The Seebeck coefficient increases with temperature, and the temperature coefficient of the resistivity is positive. Significantly low thermal conductivity, comparable to values reported for state-of-the-art thermoelectric materials, is observed in this new system, and this is assumed to be associated with the rattling effect from the Ag filler atoms. It has been demonstrated that the electrical and thermal properties correlate to the Ag concentration. For x = 3.8, a promising dimensionless thermoelectric figure of merit of ∼0.7 is obtained at 800 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号