首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Magnetic fields parallel to the electrodes were introduced during a pulse plating process to obtain cobalt thin films from alkaline baths. Ef-fects of different magnetic intensities on the composition, microstructure, and magnetic properties of cobalt thin films were investigated. It was found that the deposition speed increased gradually with the increase of magnetic intensity. Almost all of the deposited films were crys-talline and showed Co(002), Co(100) peaks. With the rise on the magnetic intensity, the intensity of Co (002) peak raised gradually. Mag-netic fields would induce cobalt growing along (002) orientation. The films were densely covered with typical nodular structure. Films of smaller grain size and smooth surface could be formed under high magnetic intensity (1 T) as a result of magnetic force and MHD effects. Moreover, higher magnetic intensity induced larger saturation magnetization and lower coercivity. With the rise on magnetic intensity, cobalt contents in the films increased gradually, which led to the rise of saturation magnetization.  相似文献   

2.
This paper describes a new approach for preparing AlN thin films containing various Co contents by using a two-facing targets type sputtering system. The as-deposited films exhibited a variable nature expected from the AlN-rich phase, as well as an amorphous-like phase, depending on the Co content in the films. The films were annealed isothermally at different temperatures and their microstructure, magnetic properties and resistivity were examined. The saturation magnetization of the as-deposited films was quite small and almost constant, irrespective of the Co content in the films, because Co was not in the crystalline state. At elevated annealing temperatures, the as-deposited AlN-Co amorphous films crystallized into two phases of AlN and Co. The saturation magnetization and resistivity of the films increased with increasing annealing time and temperature. The coercivity of the films was independent of the annealing time, but it increased with increasing annealing temperature due to the increase in grain size. A saturation magnetization, coercivity and resistivity of 360 emu/cm3, ~25 Oe and 2200 μΩ-cm, respectively, were obtained. Further improvement in the soft magnetic properties might lead to this material being applied as a high density magnetic recording head material.  相似文献   

3.
退火温度对钴铁氧体薄膜结构和性能的影响   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法结合匀胶旋涂工艺在复合基片(Pt/Ti/SiO2/Si)上制备了钴铁氧体(CoFe2O4)薄膜,利用XRD、SEM、VSM分析了薄膜的微结构以及磁性能,研究了不同退火温度对钴铁氧体薄膜的结构和磁性能的影响.结果表明,钴铁氧体在500℃时开始形成尖晶石相.随着退火温度的增高,钴铁氧体晶粒逐渐长大,饱和磁化...  相似文献   

4.
采用熔体快淬法制备(FeCo)78Nb6B15Cu1非晶薄带,通过DSC测试薄带的晶化特性,并据此在400,500,700和750℃进行1h退火处理。用XRD和SEM分析薄带在不同退火温度下的晶化行为,并用VSM测试薄带与粉体的静态磁参数。结果表明:对于固定成分的Hitperm合金,选择合适的退火温度,可控制晶粒大小和晶相比例。由于晶粒表面无序磁矩含量的变化,导致材料比饱和磁化强度发生变化,同时更小的纳米晶粒对降低矫顽力有利。由于淬态引入的微量结晶,薄带存在表面晶化现象,这在一定程度上会恶化材料的静态磁特性。  相似文献   

5.
Nanostructural γ-Ni-28Fe alloy (nano γ-Ni-28Fe) was successfully prepared by mechanochemical alloying(MCA). The relationship between the microstructure and the synthesis conditions was investigated by using XRD, TEM, SEM as well as BET analyzer. The results show that nano γ-Ni-28Fe alloy is composed of a gamma phase (FCC structure). Its grain size is about 20 nm at reduction temperature below 600 °C. The magnetic measurements indicate that the saturation magnetization of nano γ-Ni-28Fe alloy is 102.4 A·m2/kg, and the coercivity is much higher than that of conventional coarse-grained counterpart. The result may be attributed to its decrease of the grain size and chemical composition in nano γ-Ni-28Fe alloy.  相似文献   

6.
采用铜模吸铸法制备Nd56Fe30Al10Dy4大块非晶合金,利用差示扫描量热仪(DSC)、振动样品磁强计(VSM)、X射线衍射仪(XRD)和扫描电镜(SEM)研究了该合金晶化过程中磁性及微观结构的变化。结果表明,铸态下合金表现为明显的硬磁性,在765 K退火后,合金中有少量晶态相产生,内禀矫顽力和饱和磁化强度略有下降。随着退火温度升高,合金中晶态相的相对含量逐渐增加,非晶相的相对含量逐渐减少,饱和磁化强度逐渐降低,但其内禀矫顽力变化不大。810 K退火后,合金完全晶化,铁磁性消失。结合合金的磁性能、微观结构、铁磁交换耦合作用的结果分析,Nd基大块非晶合金的矫顽力来源于合金中非晶相,但非晶相的相对含量却对矫顽力影响不大,这可以用强钉扎机制进行解释。  相似文献   

7.
Amorphous FeCrMnN alloys were synthesized by mechanical alloying (MA) of the elemental powder mixtures under a nitrogen gas atmosphere. The phase identification and structural properties, morphological evolution, thermal behavior and magnetic properties of the mechanically alloyed powders were evaluated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM), respectively. According to the results, at the low milling times the structure consists of the nanocrystalline ferrite and austenite phases. By progression of the MA process, the quantity and homogeneity of the amorphous phase increase. At sufficiently high milling times (>120 h), the XRD pattern becomes halo, indicating complete amorphization. The results also show that the amorphous powders exhibit a wide supercooled liquid region. The crystallization of the amorphous phase occurs during the heating cycle in the DSC equipment and the amorphous phase is transformed into the crystalline compounds containing ferrite, CrN and Cr2N. The magnetic studies reveal that the magnetic coercivity increases and then decreases. Also, the saturation magnetization decreases with the milling time and after the completion of the amorphization process (>120 h), the material shows a paramagnetic behavior. Although the magnetic behavior does not considerably change by heating the amorphous powders up to the crystallization temperature via DSC equipment, the material depicts a considerable saturation magnetization after the transformation of the amorphous phase to the nanocrystalline compounds.  相似文献   

8.
Magnetic properties of Fe84Zr2Nb4B10 sample were investigated. The sample was produced from nanocrystalline powders made by the mechanical alloying (MA) and consolidation using the spark plasma sintering (SPS) technique. Effects of milling time on phase transformation, structural characteristics, and magnetic properties of powders were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and physical property measure system (PPMS), respectively. Results show that nanostructured α-Fe supersaturated solid solution is obtained in the final MAed products. The saturation magnetization (Ms) increased with increasing milling time and became constant at 130 h, but the coercivity (Hc) increased firstly and then decreased. The consolidated bulk sample exhibited a high density of 6.893 g·cm-3, there was no phase change during SPS process, and the saturation magnetization and susceptibility of the SPSed bulk sample improved in comparison with the milled powders. The variation of magnetic parameters can be explained by nano-scale effect and Herzer model.  相似文献   

9.
研究粗晶及纳米晶FeAs的微观结构和磁学性能.首先通过高能球磨和热处理制备粗晶FeAs,随后将粗晶FeAs进行不同时间球磨得到纳米晶FeAs.结果表明,球磨时间为32 h时,平均晶粒尺寸由>100 nm减小到32.4 nm,同时内应变增加到0.568%.随着球磨时间的增加,矫顽力由球磨前的29.2 kA/m降低到15....  相似文献   

10.
在140~180℃利用水热合成法制备了Co Fe2O4纳米颗粒。使用X射线衍射仪和振动磁强计检测Co Fe2O4纳米颗粒。结果表明:随着合成温度的升高,该颗粒的矫顽力先增大后减小,在160℃时出现峰值,晶粒尺寸和饱和磁化强度则持续增加。对上述Co Fe2O4纳米颗粒进行磁分离处理,结果表明:该颗粒的晶粒尺寸和矫顽力都有一定程度的提高,其中原产物晶粒尺寸越小,晶粒尺寸和矫顽力提高的效果越明显。说明磁分离可以去除样品中的超顺磁颗粒,减小样品的晶粒尺寸分布,提高样品的矫顽力。  相似文献   

11.
在室温下,应用对靶直流磁控溅射设备在普通玻璃基片上制备了FePt(30nm)/Ti(tnm)颗粒膜样品,随后,在真空中进行了原位退火.详细研究了Ti衬底层对FePt颗粒膜的微结构和磁特性的影响.X射线衍射图谱表明样品形成了较有序的L10织构,Ti和FePt形成了三元FePtTi合金.当Ti层厚度t=5 nm、退火温度Ta=500℃时,样品具有高度有序的L10织构、小的颗粒尺寸和优异的磁特性.矫顽力超过了6.7 kOe,饱和磁化强度为620emu/cc.并且具有较小的开关场分布.结果表明FePt/Ti颗粒膜系统可作为超高密度磁记录介质的候选者.  相似文献   

12.
在室温下,应用对靶直流磁控溅射设备在普通玻璃基片上制备了FePt(30nm)/Ti(tnm)颗粒膜样品,随后,在真空中进行了原位退火.详细研究了Ti衬底层对FePt颗粒膜的微结构和磁特性的影响.X射线衍射图谱表明样品形成了较有序的L10织构,Ti和FePt形成了三元FePtTi合金.当Ti层厚度t=5 nm、退火温度Ta=500℃时,样品具有高度有序的L10织构、小的颗粒尺寸和优异的磁特性.矫顽力超过了6.7 kOe,饱和磁化强度为620emu/cc.并且具有较小的开关场分布.结果表明FePt/Ti颗粒膜系统可作为超高密度磁记录介质的候选者.  相似文献   

13.
Electrodeposition of Fe–Ni thin films has been carried out on a copper substrate from simple as well as complex baths containing sulfate salts with Ni/Fe ratio of 1 : 1 and 12 : 1. Complex baths consistedeither all of ascorbic acid, citric acid and saccharine in addition to the salts viz. NiSO4 · 7H2O; FeSO4 · 7H2O; H3BO3 and Na2SO4 in simple bath. The chemical composition of the deposit was determined by an energy dispersive X-ray analyzer. Magnetic properties of the Fe–Ni films were measured by avibrating sample magnetometer (VSM). The X-ray diffraction was done on the electrodeposited thin films to determine Fe–Ni alloy phases. Magnetic properties of films were studied before and after heat treatment of the samples. It is found that the saturation magnetization decreases with increasing Ni content in the films obtained from simple baths with low Ni/Fe ratio (1 : 1) while the saturation magnetization increases with increasing Ni content obtained from complex bath with high Ni/Fe ratio (12 : 1). Among different baths with high Ni/Fe ratio of 12 : 1, the saturation magnetization of deposited film is higher deposited from a bath containing three complexing agents, namely, ascorbic acid, citric acid and saccharine than from a bath containing a single complexing agent–ascorbic acid. The ideal nature of the M sH (saturation magnetization vs. applied field) curve was obtained from complex baths with a high Ni/Fe ratio (12 : 1).  相似文献   

14.
Amorphous and nanocrystalline materials have attracted much interest in the field of new materials design because of their excellent mechanical and physical properties as well as their magnetic properties. In this work, Fe-40Al coatings were prepared from a nanostructured feedstock by atmospheric plasma spray combined with dry-ice blasting. The scanning electron microscopy, x-ray diffraction, tensile test, and magnetic measurements were used to investigate microstructure, phase structure, adhesion, and magnetic properties of the deposited coatings. The results showed that after using dry-ice blasting, the oxidation and porosity decreased and the atmospheric plasma-sprayed Fe-40Al coatings exhibited a soft ferromagnetic character with lower coercivity and higher saturation magnetization due to their lower degree of order. The plasma-sprayed Fe-40Al coating from the nanostructured feedstock has a very high adhesive strength.  相似文献   

15.
首次制备出具有高稳定性的Sm Co_(8.9)Si_(0.9)纳米晶合金,进而系统研究了亚稳相Sm Co_(8.9)Si_(0.9)的相变特征及相应的磁性能变化规律。发现添加元素Si可以有效提高过饱和固溶体亚稳相SmCo_(9.8)的稳定性,随着热处理温度的升高,SmCo_(8.9)Si_(0.9)纳米晶合金由SmCo_(9.8)(H)结构的单相转变为Sm_2Co_(17)(H)和Co(fcc)相,且伴随相变,矫顽力提高。其机理源于析出的细小Co相造成钉扎机制增强。进一步升高热处理温度,Sm_2Co_(17)(H)相转变为Sm_2Co_(17)(R)相,同时晶粒长大明显且晶粒尺寸分布不均匀,导致磁性能下降。  相似文献   

16.
[CoPt 1.5 ml/ZrO2 xnm]10 multilayer films were deposited on glass substrates by magnetron sputtering and then annealed in vacuum at 600℃ for 30 min. Their structures and magnetic properties were investigated as a function of ZrO2 content. The results show that the grain size and coercivity first increase and then decrease with the increase in ZrO2 content. The maximum coercivity and grain size are obtained at 37 vol.% of ZrO2. The content of ZrO2 in the film plays an important role in the separation of CoPt grains and in the reduction of intergrain exchange interaction. On the basis of the studies of angular dependent coercivity, it is found that the magnetization reversal of CoPt films with (111 ) texture is different from either the domain wall motion or the S-W type of rotation mode.  相似文献   

17.
Fe100-xPtx(x=30at.%-60at.% ) nanocomposite films were deposited on natural-oxidized Si(100) substrates by magnetron sputtering. The as-deposited films were annealed between 373 and 1073 K. In situ X-ray diffraction shows that the FePt nanocomposite films undergo a phase transformation from a disordered FCC phase to an ordered L10 phase between 673 and 773 K. The coercivity is 306 kA·m-1 whiles the average grain sizes is about 10 nm in the optimized FePt alloy film sample annealed at 673K. The adjustable coercivity and fine grain size suggest that this FePt nanocomposites system is suitable as recording media at extremely high areal density.  相似文献   

18.
The nanocrystalline Cr3+ substituted barium hexaferrite having generic formula BaFe12−xCrxO19 (where x = 0.00, 0.25, 0.50, 0.75, and 1.00) samples were synthesized by sol-gel auto-combustion technique. The precursors were prepared by using stoichiometric amounts of Ba2+, Fe3+ and Cr3+ nitrate solutions with citric acid as a chelating agent. The metal nitrate to citric acid ratio was taken as 1:2 while pH of the solution was kept at 8. The thermal decomposition of nitrate-citrate gels of as-prepared powder was investigated by TG/DTA. The as-prepared powder of BaFe12−xCrxO19 was sintered at 900 °C for 8 h. The sintered powder was characterized by XRD, EDAX, SEM and VSM technique. The pure barium hexaferrite shows only single phase hexagonal structure, while for the samples at x = 0.25, 0.50, 0.75 and 1.00 shows α-Fe2O3 peaks with M-phase of barium hexaferrite. The lattice parameters (a and c) decreases with increase in chromium content x. The particle size obtained from XRD data is in the range of 30-40 nm which confirms the nanocrystalline nature of the samples. The magnetic properties were investigated by means of vibrating sample magnetometer (VSM) technique. The saturation magnetization (Ms), remanence magnetization (Mr), coercivity (Hc) and magneton number (nB) decreases with increase in chromium content x.  相似文献   

19.
冯维存  高汝伟  李卫 《金属学报》2005,41(4):347-350
以Nd2Fe14B为例,研究了单相纳米晶硬磁材料中有效各向异性和矫顽力随晶粒尺寸及其分布的变化关系.计算结果表明:材料的有效各向异性和矫顽力随晶粒尺寸减小而降低,当平均晶粒尺寸小于20nm时,其减小更为迅速;晶粒尺寸的非理想分布没有改变有效各向异性和矫顽力随晶粒尺寸的总体变化规律,但使材料有效各向异性和矫顽力进一步下降.当微结构因子pc取值为0.7时,计算结果与Manaf等人关于矫顽力的实验结果非常接近.纳米晶硬磁材料的矫顽力随晶粒尺寸下降主要是有效各向异性常数或各向异性场的减小引起的.  相似文献   

20.
柠檬酸盐存在的酸性镀液qa(pH=4.0),通过改变[WO42-]/[Co2+]比值电沉积制备了Co-W合金薄膜.使用XRD对薄膜的微结构和相组成进行了分析,结果表明沉积态时,Co-W合金薄膜具有晶态结构;随着薄膜中Co、W含量的不同,薄膜从富Co的面心立方相向Co+Co7W6+Co3W共存相转变.采用FE-SEM对薄膜表面形貌和组成分析表明:Co-W合金薄膜中Co含量较高,随着镀液中[WO42-[Co2+]比值的增加,薄膜中W含量会增加,膜面逐渐变得致密;当镀液中[WO42-]/[Co2+]=0.5时,薄膜中W含量达到最大值,同时膜面上出现大量气孔.通过VSM对薄膜磁性能进行了测试,结果显示Co-W合金薄膜的易磁化轴平行于膜面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号