首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocomposite coatings of CrN/Si3N4 and CrAlN/Si3N4 with varying silicon contents were synthesized using a reactive direct current (DC) unbalanced magnetron sputtering system. The Cr and CrAl targets were sputtered using a DC power supply and the Si target was sputtered using an asymmetric bipolar-pulsed DC power supply, in Ar + N2 plasma. The coatings were approximately 1.5 μm thick and were characterized using X-ray diffraction (XRD), nanoindentation, X-ray photoelectron spectroscopy and atomic force microscopy. Both the CrN/Si3N4 and CrAlN/Si3N4 nanocomposite coatings exhibited cubic B1 NaCl structure in the XRD data, at low silicon contents (< 9 at.%). A maximum hardness and elastic modulus of 29 and 305 GPa, respectively were obtained from the nanoindentation data for CrN/Si3N4 nanocomposite coatings, at a silicon content of 7.5 at.%. (cf., 24 and 285 GPa, respectively for CrN). The hardness and elastic modulus decreased significantly with further increase in silicon content. CrAlN/Si3N4 nanocomposite coatings exhibited a hardness and elastic modulus of 32 and 305 GPa, respectively at a silicon content of 7.5 at.% (cf., 31 and 298 GPa, respectively for CrAlN). The thermal stability of the coatings was studied by heating the coatings in air for 30 min in the temperature range of 400-900 °C. The microstructural changes as a result of heating were studied using micro-Raman spectroscopy. The Raman data of the heat-treated coatings in air indicated that CrN/Si3N4 and CrAlN/Si3N4 nanocomposite coatings, with a silicon content of approximately 7.5 at.% were thermally stable up to 700 and 900 °C, respectively.  相似文献   

2.
In the present investigation electroless ternary NiWP-Al2O3 composite coatings were prepared using an electroless nickel bath. Second phase alumina particles (1 µm) were used to codeposit in the NiWP matrix. Nanocrystalline ternary NiWP alloys and composite coatings were obtained using an alkaline citrate based bath which was operated at pH 9 and temperature at 88 ± 2 °C. Mild steel was used as a substrate material and deposition was carried out for about 4 h to get a coating thickness of 25 ± 3 µm. Metallographic cross-sections were prepared to find out the coating thickness and also the uniform distribution of the aluminum oxide particles in NiWP matrix. Surface analysis carried out on both the coatings using scanning electron microscope (SEM) showed that particle incorporation in ternary NiWP matrix has increased the nodularity of composite coatings compared to fine nodular NiWP deposits. Elemental analysis of energy dispersive X-ray (EDX) results showed that codeposited P and W elements in plain NiWP deposit were 13 and 1.2 wt.%, respectively. There was a decrease in P content from 13 to 10 wt.% with a marginal variation in the incorporated W (1.01 wt.%) due to the codeposition of aluminum oxide particles in NiWP matrix. X-ray diffraction (XRD) studies carried out on as-plated deposits showed that both the deposits are X-ray amorphous with a grain size of around 3 nm. Phase transformation studies carried out on both the coatings showed that composite coatings exhibited better thermal stability compared to plain NiWP deposits. From the XRD studies it was found that metastable phases such as NiP and Ni5P2 present in the composite coatings heat treated at major exothermic peak temperature. Annealed composite coatings at various temperatures revealed higher microhardness values compared to plain NiWP deposits.  相似文献   

3.
The effects of K2O and Li2O-doping (0.5, 0.75 and 1.5 mol%) of Fe2O3/Cr2O3 system on its surface and the catalytic properties were investigated. Pure and differently doped solids were calcined in air at 400-600 °C. The formula of the un-doped calcined solid was 0.85Fe2O3:0.15Cr2O3. The techniques employed were TGA, DTA, XRD, N2 adsorption at −196 °C and catalytic oxidation of CO oxidation by O2 at 200-300 °C. The results revealed that DTA curves of pure mixed solids consisted of one endothermic peak and two exothermic peaks. Pure and doped mixed solids calcined at 400 °C are amorphous in nature and turned to α-Fe2O3 upon heating at 500 and 600 °C. K2O and Li2O doping conducted at 500 or 600 °C modified the degree of crystallinity and crystallite size of all phases present which consisted of a mixture of nanocrystalline α- and γ-Fe2O3 together with K2FeO4 and LiFe5O8 phases. However, the heavily Li2O-doped sample consisted only of LiFe5O8 phase. The specific surface area of the system investigated decreased to an extent proportional to the amount of K2O and Li2O added. On the other hand, the catalytic activity was found to increase by increasing the amount of K2O and Li2O added. The maximum increase in the catalytic activity, expressed as the reaction rate constant (k) measured at 200 °C, attained 30.8% and 26.5% for K2O and Li2O doping, respectively. The doping process did not modify the activation energy of the catalyzed reaction but rather increased the concentration of the active sites without changing their energetic nature.  相似文献   

4.
Amorphous carbon nitride (a-CNx) coatings were deposited on Si3N4 disks by an ion beam assisted deposition system. The composition, structure and hardness of the a-CNx coatings were characterized by Auger electronic spectroscopy, Raman spectroscopy and nano-indentation tester, respectively. The influences of normal load and sliding speed on the friction coefficients and the specific wear rates for the a-CNx/Si3N4 tribo-pairs were investigated and analyzed synthetically by ball-on-disk tribometer. The worn surfaces were observed by optical microscope. The results showed that the a-CNx coatings contained 12 at.% nitrogen, and their structure was a mixture of sp2and sp3 bonds. The a-CNx coatings’ nanohardness was 29 GPa. The influence of sliding speed on the friction coefficients and the specific wear rate of the CNx coatings was more obvious than that of normal load. The friction coefficients and the specific wear rate of the CNx coatings decreased as the sliding speed increased. At a sliding speed higher than 0.1 m/s, the friction coefficients were less than 0.04. The specific wear rates of the a-CNx coatings were higher than those of Si3N4 balls at a sliding speed below 0.1 m/s, while the specific wear rates of the a-CNx coatings and the Si3N4 balls all fluctuated around a lower level of 10− 8 mm3/Nm as the sliding speed increased beyond 0.2 m/s. To describe the wear behavior of a-CNx coatings sliding against Si3N4 balls in water with normal loads of 3-15 N and sliding speeds of 0.05-0.5 m/s, the wear-mechanism map for the a-CNx/Si3N4 tribo-pairs in water was developed.  相似文献   

5.
在基电解液中加入氮化硅纳米颗粒,对TC4钛合金进行微弧氧化(MAO)处理,研究了Si3N4浓度对微弧氧化层表面形貌、耐蚀性和耐磨性的影响。添加Si3N4的MAO层呈现多孔结构,当Si3N4浓度为1 g/L时,涂层厚度最大,且经过7 d的酸腐蚀试验,该涂层的耐蚀性良好,腐蚀速率最低,约为0.057 mg·cm-2·d-1。随着Si3N4的加入,MAO涂层的抗菌性能先升高后降低。当Si3N4的添加量为1 g/L时,该MAO层的抗菌性能最好。Si3N4的加入能明显提高涂层在模拟海水中的耐磨性。当Si3N4的添加量为3和4 g/L时,所得涂层的摩擦系数低且稳定,且添加3 g/L Si3N4制备来的MAO涂层表现出优异的耐磨性。  相似文献   

6.
Si3N4-TiN nano-composites were fabricated by hot press sintering nano-sized Si3N4 and TiN powders. The microstructure, mechanical properties and thermal shock behavior of Si3N4-TiN nano-composites were investigated. The addition of proper amount TiN particles can significantly increase the flexural strength and the fracture toughness. Si3N4-TiN nano-composites showed both higher critical temperature difference and higher residual strength compared with those of monolithic silicon nitride nano-ceramic when the amount of TiN is less than 15 wt.%. But a further increase in the amount of TiN leaded to a decrease in the thermal shock resistance.  相似文献   

7.
Mn4+, La3+ and Ho3+ doped MgAl2Si2O8-based phosphors were first synthesized by solid state reaction. They were characterized by thermogravimetry (TG), differential thermal analysis (DTA), X-ray powder diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM). The phosphors were obtained at about 1300 °C. They showed broad red and fuchsia-pink emission bands in the range of 610-715 nm and had a different maximum intensity when activated by UV illumination. Such a fuchsia-pink emission can be attributed to the intrinsic d-d transitions of Mn4+.  相似文献   

8.
Reactants were pelletized, and then combustion synthesis of Si3N4 powder was achieved under the N2 pressure of 3.0 MPa. Effects of the pelletization of reactants and Si3N4 diluents on the combustion process parameters and the characteristics of products were studied. The combustion mode of single reactant pellet was preliminarily discussed. The results indicated that the combustion reaction of single pellet was layer-by-layer from the surface to the core, which led to two peaks on the combustion temperature variation waves. With increasing the diluents content, the morphologies of Si3N4 particles changed from short rods into equiaxed grains, and residual Si in the final products obviously decreased. Single phase β-Si3N4 powder mainly contained equiaxed grains was prepared when 58 wt.% diluents was added.  相似文献   

9.
Cobalt ferrite CoFe2O4 films were fabricated on SiO2/Si(1 0 0) by the sol-gel method. Films crystallized at/above 600 °C are stoichiometric as expected. With increase of the annealing temperature from 600 °C to 750 °C, the columnar grain size of CoFe2O4 film increases from 13 nm to 50 nm, resulting in surface roughness increasing from 0.46 nm to 2.55 nm. Magnetic hysteresis loops in both in-plane and out-of-plane directions, at different annealing temperatures, indicate that the films annealed at 750 °C exhibit obvious perpendicular magnetic anisotropy. Simultaneously, with the annealing temperature increasing from 600 °C to 750 °C, the out of plane coercivity increases from 1 kOe to 2.4 kOe and the corresponding saturation magnetization increases from 200 emu/cm3 to 283 emu/cm3. In addition, all crystallized films exhibit cluster-like structured magnetic domains.  相似文献   

10.
Ni-P and Ni-P-Al2O3 amorphous alloy coatings with 9.3 and 8.3 wt.% P respectively were obtained by autocatalytic deposition at 90 °C on carbon steel substrates. The effect of annealing temperature (100, 200, 300, 400 and 500 °C) upon the corrosion parameters of the coatings in artificial seawater with pH 5.0 and 8.1 at room temperature was evaluated by potentiodynamic polarisation and electrochemical impedance spectroscopy. It was found that deposits annealed at 400 and 500 °C presented an increase of the charge transfer resistance and negligible changes on samples annealed at lower temperature. Polarisation tests showed a charge transfer controlled anodic kinetics on both Ni-P and Ni-P-Al2O3 deposits and diffusion controlled cathodic reaction in artificial seawater at pH 5.0 and 8.1. The coatings did not present passive behaviour in the electrolytes and impedance measurements showed a single time constant for all cases with the lowest double layer capacitance (Cdl) for samples annealed at 400 and 500 °C. The best corrosion parameters were observed on Ni-P and Ni-P-Al2O3 coatings annealed at temperatures higher than 400 °C, which is the temperature where crystallisation of this kind of coatings takes place.  相似文献   

11.
Novel YSZ (6 wt.% yttria partially stabilized zirconia)-(Al2O3/YAG) (alumina-yttrium aluminum garnet, Y3Al5O12) double-layer ceramic coatings were fabricated using the composite sol-gel and pressure filtration microwave sintering (PFMS) technologies. The thin Al2O3/YAG layer had good adherence with substrate and thick YSZ top layer, which presented the structure of micro-sized YAG particles embedded in nano-sized α-Al2O3 film. Cyclic oxidation tests at 1000 °C indicated that they possessed superior properties to resist oxidation of alloy and improve the spallation resistance. The thermal insulation capability tests at 1000 °C and 1100 °C indicate that the 250 μm coating had better thermal barrier effect than that of the 150 μm coating at different cooling gas rates. These beneficial effects should be mainly attributed to that, the oxidation rate of thermal grown oxides (TGO) scale is decreased by the “sealing effect” of α-Al2O3, the “reactive element effect”, and the reduced thermal stresses by means of nano/micro composite structure. This double-layer coating can be considered as a promising TBC.  相似文献   

12.
Isothermal oxidation behavior of Al4SiC4 ceramics at the temperature range from 1200 °C to 1700 °C in air for 10-20 h was investigated. The results indicated that this material had an excellent oxidation resistance from 1200 °C to 1600 °C, and the kinetics of oxidation obeyed the parabolic law with an activation energy of 220 ± 20 kJ mol−1. The oxide scales consisted of an outer oxide layer with higher density, a middle oxide layer with a few of large size pores and a reaction layer which is near to the matrix with a number of small size pores over the temperature ranges. A number of pores exist in the middle oxide scale. The oxide surface and cross-sectional morphologies were observed by scanning electron microscope (SEM) technique and the formation mechanism of the oxidation layers was also analyzed.  相似文献   

13.
LiFePO4 thin films have been sputtered from a pure LiFePO4 target onto Ag/SS, Ag/Si3N4/Si and Si3N4/Si substrates. All of the deposited films were annealed at 973 K for 1 hr in H2/Ar (5 %) atmosphere. Substrate induced microstructural and crystallographic evolutions have been observed by a scanning electron microscope and X-ray diffraction. Energy dispersion spectra and X-ray photoelectron spectra revealed that Ag was mixed in the LiFePO4 films deposited on Ag under layers. Ceramic metal composite thin films were obtained. The film conductivity (1 × 10− 3 Scm− 1) is therefore elevated by an order of six, compared with pure LiFePO4 (10− 9 Scm− 1). The electrochemical measurements of the LiFePO4-Ag films showed a flat plateau at 3.4 V (v.s. Li/Li+) and a reversible capacity of 80 mAh/g. Optimization of Ag contents may further improve the discharge capacity.  相似文献   

14.
Haifeng Liu 《Corrosion Science》2007,49(11):4134-4153
Coke formation and metal dusting of electrodeposited pure, 5 μm CeO2-dispersed, and 9-15 nm CeCO2-dispersed Ni3Al coatings were investigated in CO-H2-H2O at 650 °C for a period of 500 h. All Ni3Al coatings showed the inferior long-term resistance to coke formation and metal dusting to the Fe-Ni-Cr alloy due to failure to form a continuous Al2O3 scale. CeO2-dispersed Ni3Al coatings, especially 9-15 nm CeCO2-dispersed coatings, exhibited more severe coke formation and metal dusting than the pure Ni3Al coating. The detrimental effect of CeO2 is believed to be caused by the enhanced formation of NiO/Ni crystals on the coating surfaces or at the grain boundaries, which catalysed the carbon deposition and promoted the carbon attack on Ni3Al coatings.  相似文献   

15.
Partially amorphous Fe75Si15B10 coatings were prepared from nanostructured feedstock powders by using high velocity oxy-fuel spraying. Scanning electron microscopy, X-ray diffraction, Vickers indenter and magnetic measurements were used to investigate microstructural, structural, microhardness and magnetic properties of the coatings. The Rietveld refinement of the X-ray diffraction patterns reveals the presence of an amorphous phase, nanocrystalline α-Fe(Si,B) structure having a lattice parameter close to 0.2841 nm and an average crystallite size of about 78-83 nm in addition to small amounts of Fe3O4 oxide (104 nm) and Fe2B boride (151 nm), which disappear completely with increasing coating thickness. Coercivity and microhardness values are 15.5 Oe and 478 Hv, respectively, for 84 μm thickness.  相似文献   

16.
FeMnCr/Cr3C2 and FeMnCrAl/Cr3C2 coatings, using Ni9Al arc-sprayed coating as an interlayer on low-carbon steel substrates, were deposited by high velocity arc spraying (HVAS) on the cored wires. The high temperature oxidation behavior of the arc-sprayed FeMnCrAl/Cr3C2-Ni9Al and FeMnCr/Cr3C2 coatings on the low-carbon steel substrates was studied during isothermal exposures to air at 800 °C. The surface and interface morphologies of the coatings after isothermal oxidation after 100 h were observed and characterized by optical microscopy, field emission scanning electron microscope, energy dispersion spectrum, and X-ray diffraction. The results showed that the oxidation weight gains of the coatings were significantly lower than that of the low-carbon steel substrate. Moreover, the FeMnCrAl/Cr3C2-Ni9Al coating registered the lowest oxidation rate. This favorable oxidation resistance is due to the Al and Cr contents of the aforementioned coating that inhibits the generation of Fe and Mn oxides. This is attributed to the interdiffusion between the substrates and the Ni9Al arc-sprayed coating, which can convert the mechanical bonding between substrates and coatings into a metallurgical one, thereby inhibiting the oxidation of interface between the low-carbon steel and the coating.  相似文献   

17.
Nanoparticles of Eu3+ doped Mg2SiO4 are prepared using low temperature solution combustion technique with metal nitrate as precursor and urea as fuel. The synthesized samples are calcined at 800 °C for 3 h. The Powder X-ray diffraction (PXRD) patterns of the sample reveled orthorhombic structure with α-phase. The crystallite size using Scherer's formula is found to be in the range 50-60 nm. The effect of Eu3+ on the luminescence characteristics of Mg2SiO4 is studied and the results are presented here. These phosphors exhibit bright red color upon excitation by 256 nm light and showed the characteristic emission of the Eu3+ ions. The electronic transition corresponding to 5D0 → 7F2 of Eu3+ ions (612 nm) is stronger than the magnetic dipole transition corresponding to 5D0 → 7F1 of Eu3+ ions (590 nm). Thermoluminescence (TL) characteristics of γ-rayed Mg2SiO4:Eu3+ phosphors are studied. Two prominent and well-resolved TL glows with peaks at 202 °C and 345 °C besides a shoulder with peak at ∼240 °C are observed. The trapping parameters-activation energy (E), order of kinetics (b) and frequency factor (s) are calculated using glow curve shape method and the results obtained are discussed.  相似文献   

18.
Nanostructured TiN/CNx multilayer films were deposited onto Si (100) wafers and M42 high-speed-steel substrates using closed-filed unbalanced magnetron sputtering in which the deposition process was controlled by a closed loop optical emission monitor (OEM) to regulate the flow of N2 gas. Multilayers with different carbon nitride (CNx) layer thickness could be attained by varying the C target current (0.5 A to 2.0 A) during the deposition. It was found that the different bilayer thickness periods (i.e. the TiN layer thickness ΛTiN was fixed at 3.0 nm while the CNx layer thickness ΛCNx was varied from 0.3 to 1.2 nm) significantly affected the mechanical and tribological properties of TiN/CNx multilayer films. These multilayer films were characterized and analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM), Rockwell-C adhesion test, scratch test, pin-on-disc tribometer, and nanoindentation measurements. XPS analyses revealed that the chemical states, such as TiN, TiC, TiNxOy and TiO2, existed in a TiN layer. Nanoindentation results showed that the hardness was highly dependent on the bilayer thickness. A maximum hardness of ~ 41.0 GPa was observed in a multilayer film at bilayer thickness ΛTiN = 3.0 nm and ΛCNx = 0.9 nm. All multilayer films exhibited extreme elasticity with elastic recoveries as high as 80% at 5 mN maximum load. The compressive stresses in the films (in a range of 1.5-3.0 GPa) were strongly related to their microstructure, which depended mainly on the incorporation of nitrogen in the films. By scratch and Rockwell-C adhesion tests, the multilayer films with smaller bilayer thicknesses (ΛTiN = 3.0 nm, ΛCNx = 0.3 and 0.6 nm) exhibited the best adhesion and cohesive strength. The critical load value obtained was as high as ~ 78 N for the films with ΛTiN = 3.0 nm, ΛCNx = 0.9 nm. The friction coefficient value for a multilayer at ΛTiN = 3.0 nm and ΛCNx = 0.9 nm was found to be low 0.11. These adhesive properties and wear performance are also discussed on the basis of microstructure, mechanical properties and tribochemical wear mechanisms.  相似文献   

19.
Nano-sized Al2O3 ceramic particles (50 nm) were co-deposited with nickel using electrodeposition technique to develop composite coatings. The coatings were produced in an aqueous nickel bath at different current densities and the research investigated the effect of applied current on microstructure and thickness of the coatings. The variation in some mechanical properties such as hardness, wear resistance, and the adhesive strength of the composite coatings is influenced by the applied current and this was also studied. The morphology of the coatings was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. The hardness, wear resistance, and bond strength of the coatings were evaluated by Vickers micro-hardness test, pin-on-disc test, and tensile test, respectively. Results showed that the Al2O3 particles were uniformly distributed in the coatings, and the coatings deposited at a current density of 0.01 A/cm2 was most favorable in achieving a maximum current efficiency which causes the co-deposition of a maximum amount of Al2O3 particles (4.3 wt.%) in the coatings. The increase in Al2O3 particles in the coatings increased the mechanical properties of the Ni-Al2O3 composite coatings by grain refining and dispersion strengthening mechanisms.  相似文献   

20.
Oxide dispersed NiCrAlY bond coatings have been developed for enhancing thermal life cycles of thermal barrier coatings (TBCs). However, the role of dispersed oxides on high temperature corrosion, in particular hot corrosion, has not been sufficiently studied. Therefore, the present study aims to improve the understanding of the effect of YSZ dispersion on the hot corrosion behaviour of NiCrAlY bond coat. For this, NiCrAlY, NiCrAlY + 25 wt.% YSZ, NiCrAlY + 50 wt.% YSZ and NiCrAlY + 75 wt.% YSZ were deposited onto Inconel-718 using the air plasma spraying (APS) process. Hot corrosion studies were conducted at 800 °C on these coatings after covering them with a 1:1 weight ratio of Na2SO4 and V2O5 salt film. Hot corrosion kinetics were determined by measuring the weight gain of the specimens at regular intervals for a duration of 51 h. X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques were used to determine the nature of phases formed, examine the surface attack and to carry out microanalysis of the hot corroded coatings respectively. The results show that YSZ dispersion causes enhanced hot corrosion of the NiCrAlY coating. Leaching of yttria leads not only to the formation of the YVO4 phase but also the destabilization of the YSZ by hot corrosion. For the sake of comparison, the hot corrosion behaviour of a NiCrAlY + 25 wt.% Al2O3 coating was also examined. The study shows that the alumina dispersed NiCrAlY bond coat offers better hot corrosion resistance than the YSZ dispersed NiCrAlY bond coat, although it is also inferior compared to the plain NiCrAlY bond coat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号