共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, surface engineering research related to thermally sprayed wear and corrosion resistant coatings modified by in-situ and post-treatment by novel high power lasers (Nd:YAG and diode lasers) has been carried out. The main aim of the study was to create experimental based information and knowledge on simultaneous remelting of thermally sprayed (plasma, HVOF, flame) single layers for production of metallurgically bonded, dense corrosion and wear resistant coatings on surfaces of steels. The main focus of research was to estimate the needed processing parameters, which enable simultaneous laser-assisted thermal spraying. The microstructures and hardness-profiles for the coatings prepared by laser-assisted thermal spraying are also introduced. 相似文献
2.
C. Richard C. Kowandy J. Landoulsi M. Geetha H. Ramasawmy 《International Journal of Refractory Metals and Hard Materials》2010,28(1):115-123
Surface treatments and coatings are the practical approaches used to extend the lifetime of components and structures especially when the surface is the most solicited part of the considered engineering component. Hard thermally sprayed coating is one of the most wear resistance coating widely used in many practical mechanical applications. In the construction of articulating parts of medical devices, titanium and its alloys have to be surface coated to improve their tribocorrosion behavior. In this way, the use of porous thermal coatings is known to be a strategy for better binding bone or tissue on femoral stem for example. It is, thus, important to evaluate the corrosion and the wear behaviors of such materials for biosecurity considerations in the human body. In this study, we investigate the behavior of new nano ZrO2 and Al2O3-13 wt.% TiO2 thermal sprayed coatings on commercially pure (cp)-Ti (grade 4) and titanium alloy substrates. Friction and wear tests against Al2O3 balls showed that the wear resistance of Al2O3-13 wt.% TiO2 is better than that ZrO2 coating. Both plasma sprayings have similar abrasive wear behavior; however, the average friction coefficient is higher for alumina–titania coating. Electrochemical tests, open circuit potential monitoring and potentiodynamic polarization, were performed in simulated body conditions (Hank’s solution, 37 °C). Results showed that corrosion resistance was appreciably higher for alumina–titania coating. 相似文献
3.
Coatings have been deposited by air plasma spraying of alumina powders in the form of conventional particles (C), nanostructured agglomerates (N) and sintered–nanostructured agglomerates (S). Sintering alleviated the stresses introduced in the nanopowder by the manufacturing process (high energy ball milling). The coating porosity is a direct consequence of the powder melting degree, which is related to the feedstock porosity. The mechanical performance of the coatings is also closely associated with the powder melting degree. The N coatings present the highest surface roughness due to the lowest melting degree. The slightly higher hardness values of the N and S coatings, as compared to the C coatings, are attributed to the higher percentages of α-Al2O3 and the presence of nanostructure. The S coatings exhibit superior adhesion strength, relative fracture toughness and wear resistance, due to sintering consequences (intraparticle cohesion, strain relief, tough splat boundaries), random dispersion of coherent nanozones and stress dissipation at nanograin boundaries. 相似文献
4.
Ceramic coatings are produced on aluminum alloy by autocontrol AC pulse Plasma Electrolytic Oxidation (PEO) with stabilized average current. Transient signal gathering system is used to study the current, voltage, and the transient wave during the PEO process. SEM, OM, XRD and EDS are used to study the coatings evolution of morphologies, composition and structure. TEM is used to study the micro profile of the outer looser layer and inner compact layer. Polarization test is used to study the corrosion property of PEO coatings in NaCl solution. According to the test results, AC pulse PEO process can be divided into four stages with different aspects of discharge phenomena, voltage and current. The growth mechanism of AC PEO coating is characterized as anodic reaction and discharge sintering effect. PEO coating can increase the corrosion resistance of aluminum alloy by one order or two; however, too long process time is not necessarily needed to increase the corrosion resistance. In condition of this paper, PEO coating at 60 min is the most protective coating for aluminum alloy substrate. 相似文献
5.
It is widely recognized by the scientific community that thermal spray coatings exhibit anisotropic behaviour of mechanical properties, e.g., the elastic modulus values of the coating in-plane (i.e., parallel to the substrate surface) or through-thickness (i.e., perpendicular to the substrate surface) will tend to be significantly different due to their anisotropic microstructures. This work shows that thermally sprayed ceramic coatings may exhibit isotropic mechanical behaviour similar to that of bulk materials even when exhibiting the typical anisotropic coating microstructure. Elastic modulus values on the in-plane and through-thickness directions were measured via Knoop indention and laser-ultrasonic techniques on a coating produced via flame spray (FS) using a nanostructured titania (TiO2) powder. No significant differences were found between the coating directions. In addition, four major cracks with similar lengths were observed originating near or at the corners of Vickers indentation impressions on the coating cross-section (i.e., a typical characteristic of bulk ceramics), instead of two major cracks propagating parallel to the substrate surface, which is normally the case for these types of coatings. It was observed by scanning electron microscopy (SEM) that coatings tended to exhibit an isotropic behaviour when the average length of microcracks within the coating structure oriented perpendicular to the substrate surface was about twice that of the microcracks aligned parallel to the substrate surface. Modelling, based on scalar crack densities of horizontal and vertical cracks, was also used to estimate when thermal spray coatings tend to exhibit isotropic behaviour. 相似文献
6.
The corrosion behaviour of aluminium/silicon carbide (Al/SiC) composite coatings deposited by thermal spray on AZ31, AZ80 and AZ91D magnesium-aluminium alloys was investigated by electrochemical and gravimetric measurements in 3.5 wt.% NaCl solution at 22 °C. Corrosion products were examined by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis and low-angle X-ray diffraction (XRD). Al/SiC composite coatings in the as-sprayed state revealed high level of porosity with poor bonding at the Al/SiC and coating/substrate interfaces, which facilitated degradation of the magnesium substrates by a mechanism of galvanic corrosion. Cold-pressing post-treatment produced more compact coatings with improved corrosion performance in 3.5 wt.% NaCl compared with as-sprayed coatings. 相似文献
7.
为解决铝镁合金表面耐磨性差的问题,利用机械球磨法和PVA造粒技术制备复合陶瓷粉末,采用等离子喷涂技术在XGFH-3铝镁合金表面制备了反应复相陶瓷涂层,利用扫描电镜(SEM)、X射线衍射仪(XRD)分析了喷涂复合粉末和复相陶瓷涂层的形貌及组成.结果表明,复合粉末随着球磨时间的延长明显趋于扁平化和均匀化,并且生成了Al3Ti,Ni4Ti3等新相.而在喷涂过程中Al3Ti和Ni4Ti3中间相又会消失,涂层中出现了MgAl2O4和Ti5Si3等新相,基体和涂层之间有元素扩散,这使得涂层有良好的结合强度. 相似文献
8.
In-situ observation of thermally sprayed coating fractures may complement classical fractographic analysis to study specific failure mechanisms. In this paper, fracture of free-standing plasma sprayed ceramic (alumina) and metallic (stainless steel 316L) coatings during 3-point bending (3PB) was observed in-situ using a scanning electron microscope (SEM) in order to identify the most important failure mechanisms. Observations were supplemented by fractographic analysis of fractured specimens. 相似文献
9.
Thermally sprayed coatings are frequently subjected to impacts by small solid particles which induce surface erosion. To identify the physical mechanisms associated with such a material removal process, experimental tests as well as detailed computational analyses of porous coatings containing multiple phases are performed. In the experiments, a gas jet erosion test is conducted to measure material loss of coatings with different mixtures of brittle and ductile phases. The results show higher erosion resistances with small volume fractions of metal phase added to predominantly brittle coatings. Following this outcome, the study is directed toward elucidating the physical mechanisms behind the increased erosion resistance. Here, solid particle impacts are simulated with dynamic finite element analyses where material removals and coating's energy absorption behaviors are closely monitored. Furthermore, parametric study is carried out to quantify effects of cracking resistances and plastic dissipation on the erosion rate. The results reveal synergistic effects of fracture energy and plastic deformation. The combined mechanisms allow greater energy absorptions and enhanced erosion resistance in coatings with mixture of ductile phase. These assessments should offer insights into tailoring coatings with optimized composition of ductile phase to increase their performances. The results are also valuable in understanding foreign object damage (FOD) of coatings. 相似文献
10.
F. Grtner T. Stoltenhoff J. Voyer H. Kreye S. Riekehr M. Koak 《Surface & coatings technology》2006,200(24):6770-6782
The present investigation compares the mechanical properties of cold-sprayed and thermally sprayed copper coatings. The mechanical properties of the Cu-coatings are determined by in plane tensile test using micro-flat tensile specimen technique. A deeper view into the type of obtained defects, their stability and their influence on coating performance, is supplied by subsequent failure analyses and the comparison to annealed copper coatings. The results demonstrate that cold-sprayed coatings, processed with helium as propellant gas, show similar performance as highly deformed bulk copper sheets and respective changes in properties after annealing. In the as-sprayed condition, cold-sprayed coatings processed with nitrogen and thermally sprayed coatings show rather brittle behavior. Whereas subsequent annealing can improve the properties of the cold-sprayed coating, processed with nitrogen, such heat treatments have only minor influence on the tensile properties of thermally sprayed copper coatings. The investigation of failure modes for the as-sprayed states and after different heat treatments provided further information concerning particle–particle bonding and the effect of oxides on mechanical properties. 相似文献
11.
Zhongping Yao Yongjun XuYunfu Liu Dali WangZhaohua Jiang Fuping Wang 《Journal of Alloys and Compounds》2011,509(33):8469-8474
The aim of this work is to study the structure and the corrosion resistance of the plasma electrolytic oxidation ZrO2 ceramic coatings on Mg alloys. The ceramic coatings were prepared on AZ91D Mg alloy in Na5P3O10 and K2ZrF6 solution by pulsed single-polar plasma electrolytic oxidation (PEO). The phase composition, morphology and element distribution in the coating were investigated by X-ray diffractometry, scanning electron microscopy and energy distribution spectroscopy, respectively. The results show that the coating thickness and surface roughness were increased with the increase of the reaction time. The ceramic coatings were of double-layer structure with the loose and porous outer layer and the compact inner layer. And the coating was composed of P, Zr, Mg and K, of which P and Zr were the main elements in the coating. P in the coating existed in the form of amorphous state, while Zr crystallized in the form of t-ZrO2 and a little c-ZrO2 in the coating. Electrochemical impedance spectra (EIS) and the polarizing curve tests of the coatings were measured through CHI604 electrochemical analyzer in 3.5% NaCl solution to evaluate the corrosion resistance. The polarization resistance obtained from the equivalent circuit of the EIS was consistent with the results of the polarizing curves tests. 相似文献
12.
Preparation of ceramic coatings on inner surface of steel tubes using a combined technique of hot-dipping and plasma electrolytic oxidation 总被引:2,自引:0,他引:2
Wei-Chao Gu Guo-Hua Lv Huan Chen Guang-Liang Chen Wen-Ran Feng Gu-Ling Zhang Si-Ze Yang 《Journal of Alloys and Compounds》2007,430(1-2):308-312
A new method for inner surface modification of steel tubes, named a combined technique of hot-dipping and plasma electrolytic oxidation (PEO) was proposed and demonstrated in this paper. In this work, metallurgically bonded ceramic coatings on inner surface of steel tubes were obtained using this method. In the combined process, aluminum coatings on steel were firstly prepared by the hot-dip process and then metallurgically bonded ceramic coatings were obtained on the aluminum coatings by PEO. The element distribution, phase composition and morphology of the aluminide layer and the ceramic coatings were characterized by SEM/EDX and XRD. The corrosion resistance of the ceramic coatings were also studied. The results show that, after hot-dip treatment, the coating layers consist of two layers, where Al, FexAl (1−x) were detected from external topcoat to the aluminide/steel substrate. Then after PEO process, uniform Al2O3 ceramic coatings have been deposited on inner surface of steel tubes. The ceramic coatings are mainly composed of -Al2O3 and γ-Al2O3 phase. The compound coatings show favorable corrosion resistance property. The investigations indicate that the combination of hot-dipping and plasma electrolytic oxidation proves a promising technique for inner surface modification of steel tubes for protective purposes. 相似文献
13.
The present paper analyses the performance of CrN single-layers produced by electron beam PAPVD (EBPAPVD), finding that both corrosion and wear resistance are directly dependant on the structure and stoichiometry of the nitride. The nanolayer structure of the coatings is formed by periodically varying the nitrogen pressure during deposition resulting in layers with higher and lower N-content. This fact, which has not been described in the literature, causes different structure and morphology of the individual films providing excellent properties to the coating. For corrosion resistance, the CrN layer's greater compactness impedes penetration of the electrolyte and thus prevents the formation of a galvanic couple between the coating and the substrate. Moreover, a good wear resistance is obtained, retarding its delamination. 相似文献
14.
Rob Hui William CookChunwen Sun Yongsong XiePeter Yao Jamie MilesRobert Olive Jian LiWenyue Zheng Lefu Zhang 《Surface & coatings technology》2011,205(11):3512-3519
A series of ceramic coatings have been prepared on P91 substrates by spray pyrolysis processes and on Zr-2.5Nb substrates by a plasma electrolytic oxidation process. Preliminary results show that coatings obtained with different solution compositions and procedures can reduce the oxidation weight gain of P91 samples by factors of 2-10 for exposure times up to 500 h in deaerated supercritical water at 500 °C and 25 MPa. Results also show that the weight gain of a P91 sample with an alumina (Al2O3) coating is about nine times less than that of uncoated P91 after exposures for 400 h in deaerated supercritical water at 650 °C and 25 MPa. These results indicate that the Al2O3 coating shows promising results for preventing oxidation of P91 under supercritical water conditions. The samples with ceramic coatings on Zr-2.5Nb substrates show marginally improved corrosion resistance compared to the bare substrates. 相似文献
15.
In this work, the influence of the processing conditions on the microstructure and abrasive wear behaviour of a NiCrBSi hardfacing alloy is analysed. The hardfacing alloy was applied in the form of coatings onto a mild steel substrate (Fe–0.15%C) by different techniques: laser cladding (LC) and flame spraying (FS) combined with surface flame melting (SFM). In both cases, the appropriate selection of the process parameters enabled high-quality, defect-free NiCrBSi coatings to be obtained. The microstructure of the coatings was analysed by scanning electron microscopy (SEM), with attached energy dispersive spectroscopy (EDS) microprobe, and by X-ray diffraction (XRD). Their tribological properties were evaluated by micro-scale ball cratering abrasive wear tests using different abrasives: diamond, SiC and WC. Microstructural characterisation showed that both coatings exhibit similar phases in their microstructure, but the phases present differ in morphology, size distribution and relative proportions from one coating to another. Wear tests showed that in three-body abrasive conditions, despite these microstructural differences, the wear behaviour is comparable for both coatings. Conversely, in two-body wear conditions with diamond particles as the abrasive, it was observed that the specific wear rate of the material is sensitive to microstructural changes. This fact is particularly apparent in LC coatings, in which the zones of the layers with higher proportions of very small hard particles present a lower wear resistance. These results indicate that it is important to have good microstructural control of this material, in order to obtain coatings with an optimized and homogeneous tribological behaviour. 相似文献
16.
The production of functional coatings on glass or glass ceramic substrates is of outstanding interest in modern product development due to the specific thermophysical properties of glasses, like low or even negative CTE, low heat conductivity and high dimensional stability. Atmospheric plasma spraying (APS) is an adequate technology for the deposition of a wide variety of materials on glasses and opens new application fields for thermal spraying technology in engineering and consumer industries.Metals are the frequent solution to produce electrically conductive layers in thermal spraying operations. Concerning applications with glass ceramic as a substrate, an intermediate oxide ceramic coating is applied before depositing the metallic layer, so that the distribution of residual stresses in the composite caused during and after the deposition process due to the mismatch in the materials thermophysical properties is minimized. However, the electrical properties required for the developed coatings presented in this paper can be fulfilled using other spraying materials, like mixed phases of oxide ceramics and metal powders, or pure ceramic materials. In this way, mono-layer electrically conductive systems which ensure the required stability and adhesion of the coating can be developed, reducing as well production time and costs.In the proposed approach, the three systems, metal oxide layer-composites, ceramic-metal mixed layers and ceramic mono-layers as conductive coatings on glass ceramics were thermally sprayed with APS. The coatings were characterized in terms of residual stress distribution and electrical conductivity. The influence of the process parameters on the coating electrical and mechanical properties was analyzed using the design of experiments (DOE) methodology. 相似文献
17.
等离子喷涂Al2O3与Cr2O3涂层性能的研究 总被引:2,自引:1,他引:2
对等离子喷涂Al2O3、Cr2O3涂层耐蚀性和耐磨性的试验研究表明,在3.5%NaCl介质中,Al2O3涂层耐蚀性优于Cr2O3涂层;在滑动磨损条件下,Cr2O3涂层的耐磨性优于Al2O3涂层。 相似文献
18.
Thermal cyclic behavior of air plasma sprayed thermal barrier coatings sprayed on stainless steel substrates 总被引:1,自引:0,他引:1
Thermal barrier coatings (TBCs) were deposited by an Air Plasma Spraying (APS) technique. The coating comprised of 93 wt.% ZrO2 and 7 wt.% Y2O3 (YSZ); CoNiCrAlY bond coat; and AISI 316L stainless steels substrate. Thermal cyclic lives of the TBC were determined as a function of bond coat surface roughness, thickness of the coating and the final deposition temperature. Two types of thermal shock tests were performed over the specimens, firstly holding of specimens at 1020 °C for 5 min and then water quenching. The other test consisted of holding of specimens at the same temperature for 4 min and then forced air quenching. In both of the cases the samples were directly pushed into the furnace at 1020 °C. It was observed that the final deposition temperature has great impact over the thermal shock life. The results were more prominent in forced air quenching tests, where the lives of the TBCs were observed more than 500 cycles (at 10% spalling). It was noticed that with increase of TBC's thickness the thermal shock life of the specimens significantly decreased. Further, the bond coat surface roughness varied by employing intermediate grit blasting just after the bond coat spray. It was observed that with decrease in bond coat roughness, the thermal shock life decreased slightly. The results are discussed in terms of residual stresses, determined by hole drill method. 相似文献
19.
Ceramic coating was prepared on Q235 carbon steel by plasma electrolytic oxidation (PEO). The microstructure of the coating including phase composition, surface and cross-section morphology were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR) and scanning electron microscopy (SEM). The corrosion behavior of the coating was evaluated in 3.5% NaCl solution through electrochemical impedance spectra (EIS), potentiodynamic polarization and open-circuit potential (OCP) techniques. The bonding strength between Q235 carbon steel substrate and the ceramic coating was also tested. The results indicated that PEO coating is a composite coating composed of FeAl2O4 and Fe3O4. The coating surface is porous and the thickness is about 100 μm. The bonding strength of the coating is about 19 MPa. The corrosion tests showed that the corrosion resistance of Q235 carbon steel could be greatly improved with FeAl2O4-Fe3O4 composite coating on its surface. 相似文献
20.
B. Uyulgan E. Dokumaci E. Celik I. Kayatekin N.F. Ak Azem I. Ozdemir M. Toparli 《Journal of Materials Processing Technology》2007,190(1-3):204-210
The principle aim of this study is to investigate the wear behaviour of FeCr coatings on Ni-based bond deposited plain carbon steel substrate for several applications in power generation plants. For this purpose, FeCr and Ni-based powders were sprayed on plain carbon steel substrates using a thermal flame spray technique. Fabricated layers were characterized by using a X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), microhardness and surface roughness testers. FeCr coatings were subjected to sliding wear against AISI 303 stainless steel counter bodies under dry and acidic environments. A pin-on-plate type of apparatus was used with normal loads of 49 and 101 N and sliding speed of 1 Hz. XRD results revealed that FeCr, Fe, Cr, Fe–Cr–Ni, γ-Fe2O3 and Fe3O4 phases are exist in the coating. In addition, some inhomogenities such as oxides, porosity, cracks, unmelted particles and inclusions were observed by SEM. The surface morphologies of FeCr samples after wear experiments were examined by SEM and EDS. It was found that friction coefficients of the coatings in dry condition are higher than that in acidic environment. 相似文献