首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Novel YSZ (6 wt.% yttria partially stabilized zirconia)-(Al2O3/YAG) (alumina-yttrium aluminum garnet, Y3Al5O12) double-layer ceramic coatings were fabricated using the composite sol-gel and pressure filtration microwave sintering (PFMS) technologies. The thin Al2O3/YAG layer had good adherence with substrate and thick YSZ top layer, which presented the structure of micro-sized YAG particles embedded in nano-sized α-Al2O3 film. Cyclic oxidation tests at 1000 °C indicated that they possessed superior properties to resist oxidation of alloy and improve the spallation resistance. The thermal insulation capability tests at 1000 °C and 1100 °C indicate that the 250 μm coating had better thermal barrier effect than that of the 150 μm coating at different cooling gas rates. These beneficial effects should be mainly attributed to that, the oxidation rate of thermal grown oxides (TGO) scale is decreased by the “sealing effect” of α-Al2O3, the “reactive element effect”, and the reduced thermal stresses by means of nano/micro composite structure. This double-layer coating can be considered as a promising TBC.  相似文献   

2.
NiCoCrAlY/8YSZ coating was firstly directly deposited on aluminum alloy 5A06 by atmospheric plasma spray to make it applicable to short-time high temperature condition. The failure after thermal shock test was mainly due to the stress caused by thermal expansion mismatch between the bond coat and the substrate as well as the galvanic corrosion of the aluminum alloy. Ni-P, Ni-W-P and Ni-Cu-P as interlayers were electrolessly deposited on the substrate in order to mitigate the thermal stress. The composition and thermal transformation of the interlayers were investigated. Thermal shock resistance and bonding strength of multilayer coatings (interlayer/NiCoCrAlY/8YSZ) were tested. Diffusion layers mainly composed of AlNi, Al3Ni2 and Al3Ni were observed between the interlayers and the substrate after thermal shock test. The oxidation of the substrate was effectively inhibited. Ni-P interlayer obtained at lower pH value was superior to the other two interlayers and enhanced the thermal shock life from 38 to more than 200 cycles. With the application of the Ni-P and Ni-Cu-P interlayers, the bonding strength examined by pull-off test was also largely improved from 11.7 MPa to 18.8 and 19.0 MPa, respectively.  相似文献   

3.
The ability to measure the properties of thermal barrier coatings (TBCs) applied to engine components is challenging due to the complex geometry of parts and the difficulty of preparing samples suitable for conventional techniques. As a result, there is a shortage of information related to the morphology and thermal properties of coatings on engine components. Phase of photothermal emission analysis (PopTea) is a relatively new non-destructive technique that is suitable for measuring the thermal properties of coatings on serviceable engine parts. To demonstrate this capability, measurements are performed on an intact turbine blade coated with air plasma sprayed (APS) 7 wt.% Y2O3-stabilized ZrO2 (7YSZ). The average thermal diffusivity of the coating applied to the blade was ~ 0.5 mm2/s which is typical for thermal diffusivity previously measured on 7YSZ APS coatings made on test coupons with PopTea and laser flash. Furthermore, trends in thermal properties over the blade are studied and compared. It is discovered that variations in thermal properties are the result of differences in coating porosity.  相似文献   

4.
The rare earth zirconates have attracted interest for thermal barrier coatings (TBCs) because they have very low intrinsic thermal conductivities, are stable above 1200 °C and are more resistant to sintering than yttria-stabilized zirconia (YSZ). Samarium zirconate (SZO) has the lowest thermal conductivity of the rare earth zirconates and its pyrochore structure is stable to 2200 °C but little is known about its response to thermal cycling. Here, columnar morphology SZO coatings have been deposited on bond coated superalloy substrates using a directed vapor deposition method that facilitated the incorporation of pore volume fractions of 25 to 45%. The as-deposited coatings had a fluorite structure which transformed to the pyrochlore phase upon thermal cycling between 100 and 1100 °C. This cycling eventually led to delamination of the coatings, with failure occurring at the interface between the TGO and a “mixed zone” that formed between the thermally grown alumina oxide (TGO) and the SZO. While the delamination lifetime increased with coating porosity (reduction in coating modulus), it was significantly less than that of similar YSZ coatings applied to the same substrates. The reduced life resulted from a reaction between the rare earth zirconate and the alumina-rich bond coat TGO, leading to the formation of a mixed zone consisting of SZO and SmAlO3. Thermal strain energy calculations show that the delamination driving force increases with TGO and mixed layer thicknesses and with coating modulus. The placement of a 10 μm thick YSZ layer between the TGO and SZO layers eliminated the mixed zone and restored the thermal cyclic life to that of YSZ structures.  相似文献   

5.
Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La2(Zr0.7Ce0.3)2O7 (LZ7C3) and yttria stabilized zirconia (YSZ) were deposited by electron beam-physical vapor deposition (EB-PVD). The thermal cycling test at 1373 K in an air furnace indicates the DCL coating has a much longer lifetime than the single layer LZ7C3 coating, and even longer than that of the single layer YSZ coating. The superior sintering-resistance of LZ7C3 coating, the similar thermal expansion behaviors of YSZ interlayer with LZ7C3 coating and thermally grown oxide (TGO) layer, and the unique growth modes of columns within DCL coating are all very helpful to the prolongation of thermal cycling life of DCL coating. The failure of DCL coating is mainly a result of the reduction-oxidation of cerium oxide, the crack initiation, propagation and extension, the abnormal oxidation of bond coat, the degradation of t′-phase in YSZ coating and the outward diffusion of Cr alloying element into LZ7C3 coating.  相似文献   

6.
粘结层预处理对PS-PVD沉积7YSZ热障涂层氧化行为的影响   总被引:1,自引:1,他引:0  
目的提高PS-PVD沉积7YSZ热障涂层的抗高温氧化性能。方法采用等离子喷涂-物理气相沉积(PS-PVD)分别在未预处理和预处理(抛光+预氧化)的粘结层表面制备了柱状结构7YSZ热障涂层,并在大气环境下测试了柱状结构7YSZ热障涂层的950℃静态高温氧化性能。利用扫描电子显微镜、X射线衍射仪、能谱仪对高温氧化过程中的陶瓷层/粘结层界面形貌、TGO层结构演变进行表征。结果粘结层的抛光处理能够降低表面几何受力不均匀部位,抑制陶瓷层/TGO/粘结层界面处微裂纹的产生,同时粘结层的预氧化处理形成的薄而连续的TGO层能有效降低TGO的生长速度,抑制陶瓷层-粘结层之间的元素互扩散。柱状结构7YSZ涂层的高温氧化动力学曲线符合Wagner抛物线规律,粘结层未预处理和预处理的7YSZ热障涂层的氧化速率常数分别为0.101×10~(-12) cm~2/s和0.115×10~(-13) cm~2/s。结论粘结层预处理能有效改善等离子物理气相沉积7YSZ热障涂层的抗氧化性能。  相似文献   

7.
Diffusion aluminide coatings improve the high temperature oxidation resistance of Ti-alloys. This study evaluates the oxidation resistance of a Al3Ti type aluminide coating and a Pt-aluminide coating on Ti-alloy IMI-834, at 650, 750 and 850 °C under cyclic oxidation conditions in air. Both coatings provide good oxidation resistance, however, the extent of through-thickness cracking in coating and localized oxidation degradation of substrate increases with thermal cycling. At high temperature of 850 °C, TiO2 outgrowths emanate from these cracks, resulting in a prominent mud-crack pattern on the surface. The possible effect of such cracking on long-term oxidation properties of coatings has been discussed.  相似文献   

8.
This article addresses the problem of gas permeability of thermal sprayed yttria-stabilized zirconia thermal barrier coatings (TBC)s. The objective of this study was to decrease the open porosity of TBCs through deposition of dense alumina ceramic on the surface of the pores. A simple infiltration technique was used, beginning with aluminum isopropoxide as sol precursor, subsequently hydrated to aluminum hydroxide sol, which decomposed at relatively low temperatures to extra-fine, readily sinterable aluminum oxide. In some experiments, the sol-gel (SG) precursor was combined with fine grains of calcined alumina, constituting high solid-yield composite sol-gel (CSG) deposits within the pores of TBCs. Sinterability in the model systems, including aluminum hydroxide sol-calcined alumina and aluminum hydroxide sol-calcined alumina-zirconia, has been studied. A number of TBC specimens were impregnated with suspensions of alumina sols and CSG. It is shown that these ceramics effectively penetrated into the pores and cracks of TBCs and reduced the coating permeability to gases. The overall reduction of porosity was however small (from ∼12 to ∼11%), preserving the strain and thermal shock tolerance of the coatings. Burner rig tests showed an increase in sealed coating lifetime under thermomechanical fatigue conditions.  相似文献   

9.
Coatings of the MCrAlY type (M = Ni, Co) are commonly used as overlay coatings and as bond coats (BC's) for ceramic thermal barrier coatings (TBC's) in industrial gas turbines. During high temperature service the MCrAlY coatings form aluminium based surface oxide scales. The technologically most relevant properties of the oxide scales, growth rate and adherence do not only depend on the exact MCrAlY composition but also on the surface condition after coating manufacturing. Depending on the coating manufacturing process, the MCrAlY surfaces may substantially differ in roughness. In addition the coatings may be subjected to surface treatments (e.g. shot peening, grinding or smoothening prior to deposition of TBC). In the present work the effect of the surface roughness commonly prevailing in the case of vacuum plasma sprayed MCrAlY coatings on the morphology and composition of the alumina scales formed during high-temperature oxidation was studied. For this purpose free standing coatings with rough and polished surfaces were oxidised in the temperature range from 800 to 1100 °C with exposure times up to 1000 h. The surface scale composition and morphology were analysed by optical metallography and SEM. Fluorescence spectroscopy was used for stress measurements in the oxide scales. It has been found that the oxide scales formed on rough surfaces of MCrAlY coatings have an intrinsically different morphology and growth rate compared to those formed on the flat ground surfaces.  相似文献   

10.
Thermal barrier coatings (TBCs) with high strain tolerance are favorable for application in hot gas sections of aircraft turbines. To improve the strain tolerance of atmospheric plasma sprayed (APS) TBCs, 400 μm-500 μm thick coatings with very high segmentation crack densities produced with fused and crushed yttria stabilized zirconia (YSZ) were developed. Using a Triplex II plasma gun and an optimized spraying process, coatings with segmentation crack densities up to 8.9 cracks mm− 1, and porosity values lower than 6% were obtained. The density of branching cracks was quite low which is inevitable for a good inter-lamellar bonding.Thermal cycling tests yielded promising strain tolerance behavior for the manufactured coatings. Samples with high segmentation crack densities revealed promising lifetime in burner rig tests at rather high surface (1350 °C) and bondcoat temperatures (up to 1085 °C), while coatings with lower crack densities had a reduced performance. Microstructural investigations on cross-sections and fracture surfaces showed that the segmentation crack network was stable during thermal shock testing for different crack densities. The main failure mechanism was delamination and horizontal cracking within the TBC near the thermal grown oxide layer (TGOs) and the TBC.  相似文献   

11.
NiCrAlY bond-coat was coated on Inconel 718 substrate by air plasma spraying (APS) followed by APS ZrO2-8 wt.%Y2O3 as top-coat. Using CO2 laser of different energy densities, ceramic top-coat surface was remelted. Laser remelting with high energy density (4 J/mm2) produced a dense microstructure over the whole thickness of top-coat, while low energy density (0.67 J/mm2) laser remelting produced a ~ 50 μm thick dense layer on the top-coat surface. It was found that the volume fraction of monoclinic phase decreased from 9% in as-sprayed coating to 4% and 3% after laser remelting with high and low energy density respectively. After isothermal oxidation at 1200 °C for 200 h, the thickness of oxide layer (TGO) in the sample produced by low energy density laser remelting was ~ 5.6 μm, which was thinner than that of oxide layer in as-sprayed (~ 7.6 μm) and high energy density laser remelted (~ 7.5 μm) samples. A uniform and continuous oxide layer was found to develop on the bond-coat surface after low energy density laser remelting. Thicker oxide layer containing Cr2O3, NiO and spinel oxides was observed in both as-sprayed and high energy density laser remelted coatings. After cyclic oxidation at 1200 °C for 240 h, the weight gain per unit area of as-sprayed coating was similar to that of high energy density laser remelted coating while a significantly smaller weight gain was found in low energy density laser remelted coating.  相似文献   

12.
Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot-pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 °C. The average CTE value was found to be ∼ 9.6 × 10− 6/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Preliminary results of thermal conductivity testing at 1600 °C for LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma-sprayed on NiCrAlY/Rene N5 superalloy substrates are also presented. The plasma-sprayed coatings did not sinter even at temperatures as high as 1600 °C.  相似文献   

13.
NiCrAlY/YPSZ and NiCrAlY/NiAl/YPSZ thermal barrier coatings (TBCs) were successfully deposited by detonation spraying. The results indicated that the detonation sprayed TBCs included a uniform ceramic coat containing a few microcracks and a bond coat with a rough surface. The lamellar structure and the presence of cracks and impurities could reduce the thermal conductivity of the ceramic coat. Oxidation kinetics at 1000–1150 °C of detonation sprayed TBCs have been measured and discussed. The role of a Ni–Al intermediate layer in improving the oxidation resistance of duplex TBCs has also been studied.  相似文献   

14.
Air plasma sprayed TBCs usually include lamellar structure with high interconnected porosities which transfer oxygen from YSZ layer towards bond coat and cause TGO growth and internal oxidation of bond coat.The growth of thermally grown oxide (TGO) at the interface of bond coat and ceramic layer and internal oxidation of bond coat are considered as the main destructive factors in thermal barrier coatings.Oxidation phenomena of two types of plasma sprayed TBC were evaluated: (a) usual YSZ (yttria stabilized zirconia), (b) layer composite of (YSZ/Al2O3) which Al2O3 is as a top coat over YSZ coating. Oxidation tests were carried out on these coatings at 1100°C for 22, 42 and 100h. Microstructure studies by SEM demonstrated the growth of TGO underneath usual YSZ coating is higher than for YSZ/Al2O3 coating. Also cracking was observed in usual YSZ coating at the YSZ/bond coat interface. In addition severe internal oxidation of the bond coat occurred for usual YSZ coating and micro-XRD analysis revealed the formation of the oxides such as NiCr2O4, NiCrO3 and NiCrO4 which are accompanied with rapid volume increase, but internal oxidation of the bond coat for YSZ/Al2O3 coating was lower and the mentioned oxides were not detected.  相似文献   

15.
The purpose of this study was to evaluate the combined effect of stress and temperature on the microstructure of air plasma-sprayed 7 wt.% Y2O3-ZrO2 thermal barrier coatings, and relate microstructural changes to the thermal conductivity, kth. To simulate TBC service conditions, stand-alone tubes of YSZ were stress relaxed, starting from a compressive stress of 60 MPa, at temperatures of 1000 °C or 1200 °C. The duration of the stress relaxation test was either 5 min or 3 h. Detailed scanning electron microscopy (SEM) and Porod's specific surface area (SSA) analysis of small angle neutron scattering (SANS) results were used to determine which void systems, either interlamellar pores or intralamellar cracks, contributed to the observed relaxation of stress in the coatings. SEM investigations revealed closure of intralamellar cracks located perpendicular to the stress direction. For thinner YSZ coatings, SANS measurements indicated a statistically significant reduction in the total SSA and SSA associated with intralamellar cracks after stress relaxation at the times, temperatures, and stress investigated compared to those samples that were exposed to identical times and temperatures, but no stress. The SSA associated with the interlamellar pores was not significantly smaller in YSZ coatings stress relaxed from 60 MPa at 1200 °C for 3 h compared to as-sprayed coatings. The thermal conductivity of the coatings was strongly influenced by stress, with increases in kth observed after only 5 min at 60 MPa and 1200 °C. Reductions in the total SSA were directly linked to increases in kth.  相似文献   

16.
Sintering resistance of a novel thermal barrier coating NdxZr1  xOy with Z dissolved in, where 0 < x < 0.5, 1.75 < y < 2 and Z is an oxide of a metal selected from Y, Mg, Ca, Hf and mixtures thereof, was studied. The coatings of NdxZr1  xOy and typical 7YSZ were deposited by electron beam physical vapor deposition (EB-PVD) and air plasma spray (APS). The samples with the coating system of EB-PVD NdxZr1 − xOy or 7YSZ overlaid onto a MCrAlY bond coat were cyclically sintered at 1107 °C for 706 hours. The freestanding coatings of EB-PVD NdxZr1  xOy and 7YSZ were isothermally sintered at 1371 °C for 500 hours. The microstructure of EB-PVD NdxZr1 − xOy before and after the sintering was evaluated and compared with EB-PVD 7YSZ. The sintering resistance of freestanding APS NdxZr1 − xOy coating was also investigated after isothermal sintering at 1200 °C for 50 and 100 hours. The results demonstrated that the new coatings of NdxZr1 − xOy applied with both EB-PVD and APS have higher sintering resistance than EB-PVD and APS 7YSZ, respectively.  相似文献   

17.
A new processing concept has been developed to produce nano-structured metal-matrix composite coatings. This method combines sol-gel and electroless plating techniques to prepare highly dispersive oxide nano-particle reinforced composite coatings. Transparent TiO2 sol was added into the standard electroless plated Ni-P solution at a controlled rate to produce Ni-P-TiO2 nano-composite coatings on Mg alloys. The coating was found to have a crystalline structure. The nano-sized TiO2 particles (∼ 15 nm) were well dispersed into the Ni-P coating matrix during the co-deposition process. This technique can effectively avoid the agglomeration of nano-particles in the coating matrix. As a result, the microhardness of the composite coatings were significantly increased to ∼ 1025 HV200 compared to ∼ 710 HV200 of the conventional composite coatings produced with solid particle mixing methods. Correspondingly, the wear resistance of the new composite coatings was also greatly improved.  相似文献   

18.
New LaMgAl11O19 (LaMA)/YSZ double ceramic top coat thermal barrier coatings (TBCs) with the potential application in advanced gas-turbines and diesel engines to realize improved efficiency and durability were prepared by plasma spraying, and their thermal cycling failure were investigated. The microstructure evolutions as well as the crystal chemistry characteristics of LaMA coating which seemed to have strong influences on the thermal cycling failure of LaMA and the new double ceramic top coat TBCs based on LaMA/YSZ system were studied. For double ceramic top coat TBC system, interface modification of LaMA/YSZ by preparing thin composite coatings seemed to be more preferred due to the formations of multiple cracks during thermal cycling making the TBC to be more strain tolerant and as well as resulting in an improved thermal cycling property. The effects of the TGO stresses on the failure behavior of the TBCs were discussed through fluorescence piezo-spectroscopy analysis.  相似文献   

19.
Neodymium-cerium oxide (Nd2Ce2O7) was proposed as a new thermal barrier coating material in this work. Monolithic Nd2Ce2O7 powder was prepared by the solid-state reaction at 1400 °C. The phase composition, thermal stability and thermophysical properties of Nd2Ce2O7 were investigated. Nd2Ce2O7 with fluorite structure was thermally stable in the temperature range of interest for TBC applications. The results indicated that the thermal expansion coefficient (TEC) of Nd2Ce2O7 was higher than that of YSZ (6-8 wt.% Y2O3 + ZrO2) and even more interesting was the TEC change as a function of temperature paralleling that of the superalloy bond coat. Moreover, the thermal conductivity of Nd2Ce2O7 is 30% lower than that of YSZ, which was discussed based on the theory of heat conduction. Thermal barrier coating of Nd2Ce2O7 was produced by atmospheric plasma spraying (APS) using the spray-dried powder. The thermal cycling was performed with a gas burner test facility to examine the thermal stability of the as-prepared coating.  相似文献   

20.
李文生  王裕熙 《表面技术》2019,48(8):263-271
目的 提高热障涂层粘结层的抗高温氧化性能。方法 分别采用爆炸喷涂和等离子喷涂工艺制备了不同结构的NiCoCrAlY粘结层,之后通过等离子喷涂制备8YSZ陶瓷层,分析了两种粘结层结构的热障涂层的抗高温氧化性能。利用XRD、SEM和EDS对涂层物相、微观结构和成分进行分析,并对其与基体结合状态、抗高温氧化性能进行研究。结果 爆炸喷涂粘结层内部组织致密,缺陷较少,与基体结合处孔隙少;而等离子喷涂粘结层内部的层状特征明显,孔隙较多,表面粗糙度较低。爆炸喷涂粘结层氧化5 h后,表面生成了一层富Al2O3的致密氧化物膜;而等离子喷涂粘结层表面形成了富NiO、CoO、Cr2O3和Ni(Cr,Al)2O4的氧化物层,并出现了许多微裂纹和片层状氧化物。爆炸喷涂制备的热障涂层试样在前5 h氧化增重速率高于等离子喷涂试样,随后变平缓,而等离子喷涂试样氧化速率依然较高。爆炸喷涂热障涂层的热生长氧化物层(Thermally grown oxide, TGO)经50 h氧化后,仍呈连续状,厚度均匀,粘结层内氧化物缺陷较少。结论 爆炸喷涂粘结层组织均匀、致密,喷涂时涂层的氧化以及热处理的内氧化较少,使得足够的Al较快速地在粘结层表面形成致密的氧化铝,表面一定厚度的氧化铝层抑制了氧和其他金属原子的相向扩散反应,提高了涂层的抗高温氧化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号