首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotating fluidized beds in a static geometry are based on the new concept of injecting the fluidization gas tangentially in the fluidization chamber, via multiple gas inlet slots in its cylindrical outer wall. The tangential injection of the fluidization gas fluidizes the particles tangentially and induces a rotating motion, generating a centrifugal field. Radial fluidization of the particle bed is created by introducing a radially inwards motion of the fluidization gas, towards a centrally positioned chimney. Correctly balancing the centrifugal force and the radial gas-solid drag force requires an optimization of the fluidization chamber design for each given type of particles. Solids feeding and removal can be continuous, via one of the end plates of the fluidization chamber.The fluidization behavior of both large diameter, low density polymer particles and small diameter, higher density salt particles is investigated at different solids loadings in a 24 cm diameter, 13.5 cm long non-optimized fluidization chamber. Scale-up to a 36 cm diameter fluidization chamber is illustrated.Provided that the solids loading is sufficiently high, a stable rotating fluidized bed in a static geometry is obtained. This requires to minimize the solids losses via the chimney. With the polymer particles, a dense and uniform bed is observed, whereas with the salt particles a less dense and less uniform bubbling bed is observed. Solids losses via the chimney are much more pronounced with the salt than with the polymer particles.Slugging and channeling occur at too low solids loadings. The hydrostatic gas phase pressure profiles along the outer cylindrical wall of the fluidization chamber are a good indicator of the particle bed uniformity and of channeling and slugging. The fluidization gas flow rate has only a minor effect on the occurrence of channeling and slugging, the solids loading in the fluidization chamber being the determining factor for obtaining a stable and uniform rotating fluidized bed in a static geometry.  相似文献   

2.
Gas-solid heat transfer in rotating fluidized beds in a static geometry is theoretically and numerically investigated. Computational fluid dynamics (CFD) simulations of the particle bed temperature response to a step change in the fluidization gas temperature are presented to illustrate the gas-solid heat transfer characteristics. A comparison with conventional fluidized beds is made. Rotating fluidized beds in a static geometry can operate at centrifugal forces multiple times gravity, allowing increased gas-solid slip velocities and resulting gas-solid heat transfer coefficients. The high ratio of the cylindrically shaped particle bed “width” to “height” allows a further increase of the specific fluidization gas flow rates. The higher specific fluidization gas flow rates and increased gas-solid slip velocities drastically increase the rate of gas-solid heat transfer in rotating fluidized beds in a static geometry. Furthermore, both the centrifugal force and the counteracting radial gas-solid drag force being influenced by the fluidization gas flow rate in a similar way, rotating fluidized beds in a static geometry offer extreme flexibility with respect to the fluidization gas flow rate and the related cooling or heating. Finally, the uniformity of the particle bed temperature is improved by the tangential fluidization and resulting rotational motion of the particle bed.  相似文献   

3.
This paper is concerned with an upward co-current flow of a gas-solid two-phase mixture through a packed bed, a system employed in a number of industrial processes. Experimental work was carried out by using glass balls for packed bed, and both glass beads and FCC as suspended particles. The effects of solids loading and gas velocity on the pressure drop as well as the static and dynamic solid hold-ups within packed bed were examined. Experimental results showed different behaviour of the FCC from glass beads. At a given gas velocity, pressure drop increased approximately linearly with solids loading with a slope for FCC much higher than that for glass beads. The static hold-up of glass beads was much lower than corresponding dynamic hold-up at a given gas velocity, and it did not seem to change much with solids loading under the conditions of this work. At a given gas velocity, the static hold-up of FCC, however, was found to be comparable with the corresponding dynamic hold-up. An analysis was conducted on the pressure drop using a modified version of the Ergun equation by taking into account the effects of suspended particles on the viscosity and density, as well as the gravitational force. It was found that the modified Ergun equation agreed well with the experimental results of both this work and those reported in the literature. Effort was also made to develop relationships for the dynamic hold-up and the interaction coefficient between the suspended and the packed particles, the so-called solid-phase friction factor in the literature. The dynamic hold-up was found to increase with an increase in the product of velocity ratio of the solid to gas phases and the square root of the diameter ratio of the suspended to packed particles, whereas the interaction coefficient increased in general with increasing Froude number but with significant scattering.  相似文献   

4.
Three-dimensional numerical simulations of a horizontal rotating fluidized bed (RFB) containing glass bead particles (ds = 82 μm, ρs = 2450 kg/m3) and washed alumina (ds = 89 μm, ρs = 1550 kg/m3) were performed. FLUENT 6.1 software was used to carry out our simulation. The numerical results were compared with the experimental data of Qian and Pfeffer et al. [G.H. Qian, I. Bagyi, I.W. Burdick, R. Pfeffer, H. Shaw, Gas-Solid Fluidization in a Centrifugal Field.” AIChE J. 47 (5) (2001) 1022-1034]. The rotating speed of the RFB was set at 325 rpm (34 rad/s), which is equivalent to a centrifugal acceleration of 7 g.The flow behavior of the solid particles was analyzed; the bed thickness and the calculated pressure drop were compared with the experimental results. Our calculated pressure drop agreed very well with the experimental results.  相似文献   

5.
A. Sahoo 《Powder Technology》2005,159(3):150-154
The mixing characteristic of large particles (Geldart BD type) has been investigated in a cylindrical gas-solid fluidized bed. Based on dimensional analysis, a correlation for the mixing index has been developed with the system parameters viz., average particle size of the mixture, initial static bed height, height of the particles' layer in the bed (from where the sample is drawn) and superficial velocity of the fluidizing medium. A theoretical model for the mixing index has been developed based on the counter flow of solids with circulation and horizontal dispersion. A comparison has been made for the values of the mixing index calculated by both the theoretical and the experimental models.  相似文献   

6.
The concept and use of a rotating chimney for compressing rotating fluidized beds is theoretically and experimentally studied. A rotating chimney is shown to drastically increase the operating flexibility of rotating fluidized beds and to allow a significant improvement of the particle bed uniformity. In particular, the rate of solids losses via the chimney can be reduced and bubbling can be suppressed by compressing the rotating particle bed.  相似文献   

7.
The electrical capacitance tomography (ECT) provides fast images of the cross-sectional concentration distribution of solid-gas flow in a confined volume. This information can be integrated with numerical simulation to estimate some of the most important hydrodynamic quantities in solid-gas flow, such as the particles velocity, interstitial gas velocity and particle-particle contact forces.In this study, using the two-fluid approach, momentum and energy balance equations, along with the appropriate boundary conditions, have been solved by integrating the numerical procedure with the experimental data of the fluidised bed pressure drop and pixel distribution of particle concentration available from the ECT measurements. Preliminary results of time-dependent hydrodynamic features of the bed are presented. These results were analysed and assessed using the available experimental literature data on conventional bubbling fluidised bed. In general, it is demonstrated that the integration of ECT measurements with numerical modelling offers a unique and promising technique for comprehensive non-intrusive information on gas-solid flow systems.  相似文献   

8.
A rotating packed bed (RPB) reactor has substantially potential for the process intensification of heterogeneous catalytic reactions. However, the scarce knowledge of the liquid–solid mass transfer in the RPB reactor is a barrier for its design and scale-up. In this work, the liquid–solid mass transfer in a RPB reactor installed with structured foam packing was experimentally studied using copper dissolution by potassium dichromate. Effects of rotational speed, liquid and gas volumetric flow rate on the liquid–solid mass transfer coefficient (kLS) have been investigated. The correlation for predicting kLS was proposed, and the deviation between the experimental and predicted values was within ± 12%. The liquid–solid volumetric mass transfer coefficient (kLSaLS) ranged from 0.04–0.14 1−1, which was approximately 5 times larger than that in the packed bed reactor. This work lays the foundation for modeling of the RPB reactor packed with structured foam packing for heterogeneous catalytic reaction.  相似文献   

9.
Drag coefficient is of essential importance for simulation of heterogeneous gas-solid flows in fast-fluidized beds, which is greatly affected by their clustering nature. In this paper, a cluster-based drag coefficient model is developed using a hydrodynamic equivalent cluster diameter for calculating Reynolds number of the particle phase. Numerical simulation is carried out in a gas-solid fast-fluidized bed with an Eulerian-Lagrangian approach and the gaseous turbulent flow is simulated using large eddy simulation (LES). A Lagrange approach is used to predict the properties of particle phase from the equation of motion. The collisions between particles are taken into account by means of direct simulation Monte Carlo (DSMC) method. Compared with the drag coefficient model proposed by Wen and Yu, results predicted by the cluster-based drag coefficient model are in good agreement with experimental results, indicating that the cluster-based drag coefficient model is suitable to describe various statuses in fast-fluidized beds.  相似文献   

10.
在表观气速Ug=0.04~1.14 m/s时,采用旋流筛板构型的挡板式内构件,通过对比分析旋流筛板式气固挡板流化床与自由床内流动现象、压差脉动标准偏差和压力脉动标准偏差等参数,确定了旋流筛板式气固挡板流化床能有效破碎气泡的流动与操作条件。结果表明,构件下方区域颗粒随表观气速增加而不断转移至构件上方床层,造成构件下方区域密相床层高度持续降低,该区域出现3种流动状态并直接决定构件是否能破碎气泡。当Ug<0.44 m/s时,构件下方区域密相床层料位较高,形成下部为密相床层、上部为密相与大气泡交替通过构件的鼓泡床,此时构件具有抑制气泡生长并破碎气泡的作用,全床压差脉动及压力脉动标准偏差低于相同条件下的自由床;当0.44≤Ug<0.66 m/s时,密相床层料位较低,形成下部为密相床层、上部为单一稀相的湍动床,此时构件不再直接抑制气泡生长或破碎气泡,但构件下方密相床层的存在能降低构件下方及构件上方一定高度内床层的压力脉动强度;当Ug≥0.66 m/s后,密相床层完全消失,形成气体为连续相的稀相流化状态,构件不能破碎气泡、降低床层压力和压差脉动强度。  相似文献   

11.
This work investigates the feasibility of applying the cross-flow rotating packed bed (RPB) to the removal of carbon dioxide (CO2) by absorption from gaseous streams. Monoethanolamine (MEA) aqueous solution was used as the model absorbent. Also, other absorbents such as the NaOH and 2-amino-2-methyl-1-propanol (AMP) aqueous solutions were compared with the MEA aqueous solution. The CO2 removal efficiency was observed as functions of rotor speed, gas flow rate, liquid flow rate, MEA concentration, and CO2 concentration. Experimental results indicated that the rotor speed positively affects the CO2 removal efficiency. Our results further demonstrated that the CO2 removal efficiency increased with the liquid flow rate and the MEA concentration; however, decreased with the gas flow rate and the CO2 concentration. Additionally, the CO2 removal efficiency for the MEA aqueous solution was superior to that for the NaOH and AMP aqueous solutions. Based on the performance comparison with the conventional packed bed and the countercurrent-flow RPB, the cross-flow RPB is an effective absorber for CO2 absorption process.  相似文献   

12.
13.
This paper reports an experimental study on both transient and steady-state heat transfer behavior of a gas-solid two-phase mixture flowing through a packed bed under constant wall temperature conditions. A logarithmic mean temperature difference (LMTD) method is used to process the temperature data to obtain the overall heat transfer coefficient. The influences of particle loading and gas flow Reynolds number are investigated. The results show that the introduction of suspended particles greatly enhances heat transfer between the flowing gas-solid two-phase mixture and the packed bed, and the enhancement increases approximately linearly with increasing particle loading. The heat transfer coefficient data are processed to give the Nusselt number, which is found to correlate well to the Reynolds number, the Archimedes number and the suspended particle loading ratio. A comparison of the data of this work with the published data reveals large discrepancy. Possible reasons for the discrepancy are discussed.  相似文献   

14.
Three-dimensional unsteady-state turbulent rotating single-phase flows were simulated in rotating packed beds (RPB) and were validated using overall dry pressure drop measurements for three RPB designs [Liu, H.-S., Lin, C.-C., Wu, S.-C., Hsu, H.-W., 1996. Characteristics of a rotating packed bed. Industrial and Engineering Chemistry Research 35, 3590-3596; Sandilya, P., Rao, D.P., Sharma, A., Biswas, G., 2001b. Gas-phase mass transfer in a centrifugal contactor. Industrial and Engineering Chemistry Research 40, 384-392; Zheng, C., Guo, K., Feng, Y.D., Yung, C., 2000. Pressure drop of centripetal gas flow through rotating bed. Industrial and Engineering Chemistry Research 39, 829-834]. Analysis of the radial and tangential velocities highlighted the impact of gas feed entrance effects on the peripheral gas maldistribution in the rotating packing module. Recommendations were formulated for an optimum design with the aim to reduce gas flow maldistribution in RPBs. Breakdown of the overall pressure drop in its modular components for the housing, the rotating packing module, the free inner rotational zone, and the gas disengagement showed that the dissipation in the rotating packing could be a minor contributor to the overall pressure drop which may be undesirable in terms of RPB mass transfer and reaction efficiencies. Analysis of the simulated pressure drops allowed development of CFD-based Ergun-type semi-empirical relationships in which the gas-slip and radial acceleration effects, the laminar and inertial drag effects, and the centrifugal effect were aggregated additively to recompose the pressure drops in the rotating packing module.  相似文献   

15.
在对旋转填料床精馏特性研究的基础上,以塑料多孔板为填料,乙醇-水为体系,在全回流操作条件下,进一步研究了气相动能因子F、超重力因子β和回流量L对旋转填料床流体力学特性的影响,证明了旋转填料床的低耗能特性。  相似文献   

16.
Rotating packed bed (RPB), in which high gravity is simulated by a centrifugal force, plays an important role in process intensification of fluid mixing and mass transfer. However, uneven initial liquid distribution in RPB leads to poor micromixing efficiency in local areas of the packing. Therefore, a premixed liquid distributor is proposed in this work to improve the liquid distribution in RPB. Micromixing efficiency of RPB with the premixed liquid distributor was studied by adopting the iodide–iodate reaction as working system and show better micromixing efficiency compared to that of RPB with non-premixed liquid distributor. Also, the effects of operating conditions (e.g. rotational speed, acid concentration, volumetric flow rate) and geometries using the premixed liquid distributor on micromixing efficiency (characterized by segregation index XS) were investigated. The results show that segregation index XS decreases with the increase of rotational speed, and the decrease of acid concentration and volumetric flow rate.  相似文献   

17.
In the last several decades, circulating fluidized bed reactors have been studied in many aspects including hydrodynamics, heat and mass transfer and gas–solid two phase contacting. However, despite the abundance of review papers on hydrodynamics, there is no summary paper on gas–solid contact efficiency to date, especially on high density circulating fluidized beds(CFBs). This paper gives an introduction to, and a review of the measurement of contact efficiency in circulating fluidized bed riser. Firstly, the popular testing method of contact efficiency including the method of heating transfer experiment and hot model reaction are discussed, then previous published papers are reviewed based on the discussed methods. Some key results of the experimental work are described and discussed. Gas–solid contact efficiency is affected by the operating conditions as well as the particle size distribution. The result of the contact efficiency shows that the CFB riser is far away from an ideal plug flow reactor due to the characteristics of hydrodynamics in the riser. Lacunae in the available literature have been delineated and recommendations have been made for further work.  相似文献   

18.
The objective of the present study was to provide insight into the effect of operating conditions on the performance of gas-assisted nozzles injecting liquid into gas-solid fluidized beds. Acquisition of such knowledge is relevant to many industrial applications where liquid injections into fluidized beds of solid particles are performed via spray nozzles. In the fluid coking process, for example, product yields and reactor operability strongly benefit from a rapid and uniform distribution of the liquid feed on fluidized solid particles, which, in turn, is greatly affected by the performance of the liquid-injection system used.A novel experimental technique was employed to investigate the effect of varying the air-to-liquid ratio (ALR), the liquid mass flow rate, and the nozzle size on the contact efficiency of injected liquid on fluidized bed particles. Increasing the ALR or the liquid flow rate increased the nozzle spraying efficiency. On the contrary, increasing the nozzle size while keeping the gas and the liquid flow rates constant, and hence decreasing the pressure at the nozzle tip, lowered the liquid-solid contact efficiency.The effect of increasing the ALR on the liquid-solid contact resulting from nozzle-injections into the fluid bed, was correlated to both the nozzle atomization performance, as determined by open-air tests using a laser-photocell equipment, and the solids entrainment into the gas-liquid jet, as predicted by a model.  相似文献   

19.
On the basis of analysis of key engineering factors predominating in cationic polymerization, butyl rubber (IIR) as an example was synthesized by cationic polymerization in the high‐gravity environment generated by a rotating packed bed (RPB) reactor. The influence of the rotating speed, packing thickness, and polymerization temperature on the number average molecular weight (Mn) of IIR was studied. The optimum experimental conditions were determined as rotating speed of 1200 r min?1, packing thickness of 40 mm and polymerization temperature of 173 K, where IIR with Mn of 289,000 and unimodal molecular weight distribution of 1.99 was obtained. According to the experimental results and elementary reactions, a model for the prediction of Mn was developed, and the validity of the model was confirmed by the fact that most of the predicted Mns agreed well with the experimental data with a deviation within 10%. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

20.
Pneumatic drying is widely used in many engineering applications. It has been shown in earlier research [Fyhr C. and Rasmuson A., Mathematical model of a pneumatic conveying dryer, AIChE Journal, Vol. 43, pp 2889-2902, 1997.] that the U-bends in the pneumatic conveying dryer system significantly influence drying behavior since they create enhanced slip velocities between suspended material and the drying medium. On one hand, this slip will increase external heat and mass transfer rates, thereby enhancing drying conditions. On the other hand, increasing the number of bends will cause an increase in pressure drop. Use of the suitable mean gas velocity and the suitable bend radius ratio will result in a better design and improved operating conditions.Two-phase CFD calculations, using a Eulerian-Eulerian model and commercial program Fluent 6.0, were employed to calculate the gas and particle flows in a U-bend. Variables studied include: particle diameter, particle density, particle volume fraction, gas velocity and bend radius ratio. The numerical calculations were validated against experimental data from the literature. The density and diameter of particle vary from 600 up to 1000 kg/m3 and from 0.00025 up to 0.001 m, respectively. The gas velocity and particle volume fraction vary from 10 up to 25 m/s and from 0.001 up to 0.01 m3/m3, respectively. The bend radius ratio varies from 3 up to 8 m/m. The slip velocity is affected by all the studied parameters, in particular, particle diameter, gas velocity and bend radius ratio; whereas the total pressure drop is strongly affected by gas velocity and bend radius ratio. A low mean gas velocity will give a lower total pressure drop and longer particle residence time. A small bend radius ratio will produce a faster dispersion of particles, which benefits drying, but on the other hand, will increase the total pressure drop. Thus, optimizing gas velocity and bend radius ratio is important in reducing energy consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号