首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel Selective Laser Melting (SLM) process was applied to prepare bulk-form TiC/Ti5Si3 in-situ composites starting from Ti/SiC powder system. The influence of the applied laser energy density on densification, microstructure, and mechanical performance of SLM-processed composite parts was studied. It showed that the uniformly dispersed TiC reinforcing phase having a unique network distribution and a submicron-scale dendritic morphology was formed as a laser energy density of 0.4 kJ/m was properly settled. The 96.9% dense SLM-processed TiC/Ti5Si3 composites had a high microhardness of 980.3HV0.2, showing more than a 3-fold increase upon that of the unreinforced Ti part. The dry sliding wear tests revealed that the TiC/Ti5Si3 composites possessed a considerably low friction coefficient of 0.2 and a reduced wear rate of 1.42 × 10− 4 mm3/Nm. The scanning electron microscope (SEM) characterization of the worn surface morphology indicated that the high wear resistance was due to the formation of adherent and strain-hardened tribolayer. The densification rate, microhardness, and wear performance generally decreased at a higher laser energy density of 0.8 kJ/m, due to the formation of thermal cracks and the significant coarsening of TiC dendritic reinforcing phase.  相似文献   

2.
Coatings of a composite material consisting of an Al-Si matrix reinforced with SiC particles were produced by laser cladding on UNS A03560 cast Al-alloy substrates from mixtures of powders of Al-12 wt.% Si alloy and SiC. The influence of the processing parameters on the microstructure and abrasive wear resistance of the coatings was studied. For an interaction time of 0.08 s and a power density of 330 MW/m2, corresponding to a specific energy of 26 MJ/m2, the interaction between SiC and liquid Al is limited and the reinforcement particles remain essentially undissolved. The coating's microstructure is formed of SiC particles dispersed in a matrix consisting of primary α-Al dendrites and interdendritic α-Al + Si eutectic. For interaction times of 0.3 and 0.45 s and a power density of 193 MW/m2, corresponding to specific energies of 58 and 87 MJ/m2, SiC reacts with molten Al and partially dissolves. The resulting microstructure consists of undissolved SiC particles, found mainly at the bottom of the clad tracks, where the maximum temperature reached during processing is lower, and Al4SiC4 and Si particles dispersed in a matrix of α-Al + Si eutectic. The coatings prepared with higher specific energy (58 MJ/m2) present a hardness of 250 V and an abrasive wear rate in three-body abrasion tests with SiC as abrasive of 1.7 × 10− 4 mm3/m, while those produced with 26 MJ/m2 present a hardness of 120 V and a wear rate of 0.43 × 10− 4 mm3/m. These results show that Al4SiC4 and Si increase the hardness of the material by dispersion hardening but do not contribute to its abrasive wear resistance, because they are softer than the abrasive particles, and confirm that the parameters used to prepare Al-Si-SiC composite coatings by laser cladding must be selected so that only minimal reactions occur between SiC and molten Al.  相似文献   

3.
TiCN coatings with different C content were deposited using a large area filtered arc deposition (LAFAD) technique from Ti targets in a mixture of N2 and CH4 gases. Scanning electron microscopy (SEM), nano-indentation, and pin-on-disc tribometer were used to characterize the cross-sectional microstructure, hardness, modulus, wear rate, and friction coefficient of the TiCN coatings. The increase in the CH4 fraction in the gases leads to a continuous increase in the deposition rate of the TiCN coatings as well as an increase in the defect density in the coatings. Nano-indentation results indicate that with an increase of the C content in the coatings, the hardness and elastic modulus increase to a maximum at a C content of 2.8 at.%, then decreases rapidly, which results from the increase in the defect density in the coatings. Tribological test results show that when tested against Al2O3 balls, there is no significant change in the friction coefficient (0.78-0.88) of the TiCN coatings with a C content of below 4.6 at.%, but the friction coefficient decreases rapidly to 0.21 with a further increase in the C content to 9.3 at.%. In addition, with increasing C content in the coatings from 0 to 9.3 at.%, the wear rate decreases remarkably from 2.5 × 10−6 mm3/Nm to 5.3 × 10−7 mm3/Nm. The low friction coefficient and the formation of a transfer layer correspond to the low wear rate for the TiCN coatings with high C content.  相似文献   

4.
As a variation of high power pulsed magnetron sputtering technique, modulated pulse power (MPP) magnetron sputtering can achieve a high deposition rate while at the same time achieving a high degree of ionization of the sputtered material with low ion energies. These advantages of the MPP technique can be utilized to obtain dense coatings with a small incorporation of the residual stress and defect density for the thick coating growth. In this study, the MPP technique has been utilized to reactively deposit thick Cr2N and CrN coatings (up to 55 μm) on AISI 440C steel and cemented carbide substrates in a closed field unbalanced magnetron sputtering system. High deposition rates of 15 and 10 μm per hour have been measured for the Cr2N and CrN coating depositions, respectively, using a 3 kW average target power (16.7 W/cm2 average target power density), a 50 mm substrate to target distance and an Ar/N2 gas flow ratio of 3:1 and 1:1. The CrN coatings showed a denser microstructure than the Cr2N coatings, whereas the Cr2N coatings exhibited a smaller grain size and surface roughness than those of the CrN coatings for the same coating thickness. The compressive residual stresses in the CrN and Cr2N coatings increased as the coating thickness increased to 30 μm and 20 μm, respectively, but for thicker coatings, the stress gradually decreased as the coating thickness increased. The CrN coatings exhibited an increase in the scratch test critical load as the thickness was increased. Both CrN and Cr2N coatings showed a decrease in the hardness and an increase in the sliding coefficient of friction as the coating thickness increased from 2.5 to 55 μm. However, the wear rate of the CrN coatings decreased significantly as the coating thickness was increased to 10 μm or higher. The 10-55 μm CrN coating exhibited low wear rates in the range of 3.5-5 × 10−7 mm3 N−1 m−1. To the contrary, the Cr2N coating exhibited relatively low wear resistance in that high wear rates in the range of 3.5 to 7.5 × 10−6 mm3 N−1 m−1 were observed for different thicknesses.  相似文献   

5.
Multi-element (AlCrTaTiZr)N coatings are deposited onto Si and cemented carbide substrates by reactive RF magnetron sputtering in an Ar + N2 mixture. The influence of substrate bias voltage, ranging from 0 to − 200 V, on the microstructural, mechanical and tribological properties of these nitride coatings is studied. A reduction in concentration of N and Al is observed with increasing substrate biases. The (AlCrTaTiZr)N coatings show the face-centered-cubic crystal structure (B1-NaCl type). The use of substrate bias changes the microstructure of the (AlCrTaTiZr)N coating from the columns with microvoids in boundaries to the dense and less identified columns. The compressive macrostress increases from − 0.9 GPa to − 3.6 GPa with an increase of substrate bias. The hardness and adhesion increase to peak values of 36.9 GPa and 60.7 N at the bias voltage of − 150 V, respectively. The tribological properties of the (AlCrTaTiZr)N coatings against 100Cr6 steel balls are evaluated by a ball-on-disc tribometer with a 10 N applied load. With an increase of substrate bias, the wear rate reduces while the friction coefficient almost keeps constant at 0.75. The lowest wear rate of 3.65 × 10− 6 mm3/Nm is obtained for the (AlCrTaTiZr)N coating deposited at the bias voltage of − 150 V.  相似文献   

6.
The paper will present the state-of-art in the process, structure and properties of nanostructured multifunctional tribological coatings used in different industrial applications that require high hardness, toughness, wear resistance and thermal stability. The optimization of these coating systems by means of tailoring the structure (graded, superlattice and nanocomposite systems), composition optimization, and energetic ion bombardment from substrate bias voltage control to provide improved mechanical and tribological properties will be assessed for a range of coating systems, including nanocrystalline graded Cr1−xAlxN coatings, superlattice CrN/AlN coatings and nanocomposite Cr–B–N and TiC/a-C coatings. The results showed that the superlattice CrN/AlN coating exhibited a super hardness of 45 GPa when the bilayer period Λ was about 3.0 nm. Improved toughness and wear resistance have been achieved in the CrN/AlN multilayer and graded CrAlN coatings as compared to the homogeneous CrAlN coating. For the TiC/a-C coatings, increasing the substrate bias increased the hardness of TiC/a-C coatings up to 34 GPa (at −150 V) but also led to a decrease in the coating toughness and wear resistance. The TiC/a-C coating deposited at a −50 V bias voltage exhibited an optimized high hardness of 28 GPa, a low coefficient of friction of 0.19 and a wear rate of 2.37 × 10−7 mm3 N−1 m−1. The Cr–B–N coating system consists of nanocrystalline CrB2 embedded in an amorphous BN phase when the N content is low. With an increase in the N content, a decrease in the CrB2 phase and an increase in the amorphous BN phase were identified. The resulting structure changes led to both decreases in the hardness and wear resistance of Cr–B–N coatings.  相似文献   

7.
The paper reports on preparation of ~ 3000 nm thick a-C coatings containing Mo, interrelationships between their mechanical properties, a coefficient of friction μ and wear rate k and the effect of Mo content in the a-C coating on these interrelationships. The Mo-C coatings were prepared by sputtering using an unbalanced magnetron (UM) equipped with a graphite targets (∅ = 100 mm, 99.9% purity) fixed to the UM cathode with Mo ring of different inner diameter ∅i. The content of Mo in the a-C coating was controlled by ∅i. It is shown that μ and k of the coating strongly depend not only on its hardness H but also on its effective Young's modulus E? = E/ (1 − ν2), the ratios H/E?, H3/E?2 and the elastic recovery We; here E is the Young's modulus and ν is the Poisson ratio. The ratio H3/E?2 characterizes the resistance of coating to plastic deformation. Coatings with a low amount of Mo composed of nanograins of carbides dispersed in a-C matrix exhibit low values of μ ≈ 0.07 and k ≈ 10− 7 mm3/Nm measured with WC ball at the rotation speed v = 0.05 m/s, total sliding length l = 1000 m and the load L = 2 N.  相似文献   

8.
CrN-Ag composite coatings, 2 and 5 μm thick and containing 22 at.% Ag solid lubricant, were grown on Si(001) and 440C stainless steel substrates by reactive co-sputtering at Ts = 500 °C, and were covered with 200 nm thick pure CrN diffusion barrier cap layers. Annealing experiments at Ta = 625 °C, followed by quantitative scanning electron microscopy, energy dispersive x-ray spectroscopy, and Auger depth profile analyses indicate considerable Ag transport to the top surface for a barrier layer deposited at a substrate floating potential of −30 V, but negligible Ag diffusion when deposited with a substrate bias potential of −150 V. This is attributed to ion-irradiation induced densification which makes the cap layer an effective diffusion barrier. High temperature tribological sliding tests of this coating system against alumina balls at Tt = 550 °C indicate an initial friction coefficient μ = 0.43 ± 0.04 which decreases monotonically to 0.23 ± 0.03. This is attributed to the development of wear mediated openings in the barrier layer which allow Ag lubricant to diffuse to the sliding top surface. In contrast, pure CrN exhibits a constant μ = 0.41 ± 0.02 while CrN-Ag composite coatings without cap layer show a low transient μ = 0.16 ± 0.03, attributed to Ag transport to the surface, that however increases to μ = 0.39 ± 0.04 after ~ 6000 cycles as the Ag reservoir in the coating is depleted. That is, the dense CrN cap layer reduces the Ag lubricant flow rate and therefore prolongs the time when the coating provides effective lubrication. This results in a cumulative wear rate over 10,000 cycles of 3.1 × 10−6 mm3/Nm, which is 3.3 × lower than without diffusion barrier layer.  相似文献   

9.
Titanium aluminides coatings were in-situ synthesized on a pure Ti substrate with a preplaced Al powder layer by laser surface alloying. The friction and wear properties of the titanium aluminides coatings at different normal loads and sliding speeds were investigated. It was found that the hardness of the titanium aluminides coatings was in the following order: Ti3Al coating > TiAl coating > TiAl3 coating. Friction and wear tests revealed that, at a given sliding speed of 0.10 m/s, the wear volume of pure Ti and the titanium aluminum coatings all increased with increasing normal load. At a given normal load of 2 N, for pure Ti, its wear volume increased with increasing sliding speed; for the titanium aluminides coatings, the wear volume of Ti3Al coating and TiAl coating first increased and then decreased, while the wear volume of TiAl3 coating first decreased and then increased with increasing sliding speed. In addition, the friction coefficients of pure Ti and the titanium aluminides coating decreased drastically with increasing sliding speed. Under the same dry sliding test conditions, the wear resistance of the titanium aluminium coatings was in the following order: Ti3Al coating > TiAl coating > TiAl3 coating.  相似文献   

10.
Copper composite coating with graphite (Cg) and/or silicon carbide (SiC) particles were deposited by electroless plating. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) showed that Cu particles were uniformly distributed. The obtained coating thickness was approximately ± 5 μm. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques were used to characterise the structure and to study the phase transition of the coatings, respectively. Phases such as Cu, Cu2O, Cu3P, Cu3Si, SiC and Cg were observed from X-ray diffraction patterns and the presence of Cu2O, Cu3P and Cu3Si was confirmed by differential scanning calorimetry (DSC) studies. The results demonstrated that SiC and Cg particles have little influence on the phase transition of the coating. The hardness and wear resistance of Cu-P composite coatings were improved with the incorporation of SiC particles. The friction coefficient of Cu-P composite coatings decreased with the incorporation of Cg particles. Atomic force microscopy (AFM) results of coatings showed that the roughness of the coatings increased with the incorporation of SiC to the Cu-P coatings and decreased with the incorporation of Cg. Cu-P-Cg-SiC composite coatings showed a moderate roughness, hardness between Cu-P-SiC and Cu-P-Cg coatings, had low friction and good anti-wear properties. The anti corrosion resistance of the electroless Cu-P composite coatings on carbon steel were studied in 3.5% NaCl and 1 M HCl solutions by the potentiodynamic polarisation technique. The study revealed that the corrosion resistance increased with the incorporation of SiC particles in the Cu-P and Cu-P-Cg matrix but reduced with the incorporation of graphite.  相似文献   

11.
Fe-based metallic glass forming powders have been deposited on mild steel substrates using high power laser cladding. Coatings microstructures have been analysed by scanning- and transmission-electron microscopy and at varying substrate dilutions, have been found to comprise a 100 to 500 nm interdendritic austenitic phase and a dendritic dual-phase of ferrite/martensite. The application of double layer coatings has shown microstructural refinement. This leads to a needle-like microstructure resulting in a nanoindentation tested hardness increase from ~ 11 GPa up to almost 15 GPa. The layers have been subjected to both dry sliding wear and 3-body microscale abrasive wear testing. The dry sliding results show the layers to exhibit excellent wear resistance - particularly at high speed (50 cm s− 1) with wear rate values of ~ 1 × 10− 8 mm3/Nm being recorded for the double layer coatings. The single layer coatings reveal a micro-wear mechanism connected with the slip between the ferrite and martensite in the dendritic dual-phase. Microscale abrasive wear testing also reveals that the layers have a good wear resistance, with wear scars exhibiting characteristic material removal by micro-chipping. There is no preferential abrasion of any one phase, nor are track over-lap areas, cracks or pores found to result in varying wear scar dimensions.  相似文献   

12.
Effect of MoSx content has been studied in TiN-MoSx composite coating deposited by closed-field unbalanced magnetron sputtering (CFUBMS) using separate MoS2 and Ti target in N2 gas environment. Pulsed dc power was applied for both the targets as well as for substrate biasing. Crystallographic orientation and structure of the coating was analysed by grazing incidence X-ray diffraction (GIXRD) technique. The surface morphology and coating fractograph were studied with field emission scanning electron microscopy (FESEM) whereas the composition of the coating was determined by energy dispersive spectroscopy (EDS) by X-ray. Scratch adhesion test, Vickers microhardness test and pin-on-disc test with cemented carbide (WC-6%Co) ball were carried out to investigate mechanical and tribological properties of the coating. Increase in MoSx content (from 6.22 wt.% to 30.43 wt.%) was found to be associated with decrease in grain size (from 63 nm to 24 nm). Maximum hardness of 32 GPa was obtained for TiN- MoSx composite coating. Film substrate adhesion was also observed to depend on MoSx content of the composite coating. Significant improvement in tribological properties was observed. With optimal MoSx content, it was possible to achieve low friction (µ = 0.02-0.04) and wear resistant (wear coefficient = 5.5 × 10− 16 m3/Nm) composite solid lubricant coating.  相似文献   

13.
In this investigation, 3 mol% Y2O3 stabilized ZrO2-based composites reinforced with 10 vol.%, 20 vol.% and 40 vol.% WC (named as 3Y-TZP/10WC, 3Y-TZP/20WC and 3Y-TZP/40WC) were fabricated by using injection molding and sintering. Mechanical properties of these composites varied due to WC addition and dwelling time. Density, strength and toughness decreased with shorter dwelling time and increasing WC content however a significant enhancement in fracture toughness was obtained by 3Y-TZP/20WC composite which had 9.2 MPa m1/2 toughness. Severe unlubricated wear tests which were performed under 55 N normal load and 45 km sliding distance showed that 3Y-TZP/20WC composite had the lowest wear rate and wear volume values which are 2 × 10−8 mm3/(N m−1) and 0.05 mm3, respectively.  相似文献   

14.
NiCrBSi and NiCrBSi/WC-Ni composite coatings were produced on pure Ti substrates by the laser cladding technology. Thermal gravimetric (TG) analysis was used to evaluate the high temperature oxidation resistance of the laser cladding coatings. The friction and wear behavior was tested through sliding against the Si3N4 ball at elevated temperatures of 300 °C and 500 °C. Besides, the morphologies of the worn surfaces and wear debris were analyzed by scanning electron microscopy (SEM) and three dimensional non-contact surface mapping. The results show that the microhardness, high temperature oxidation resistance and high temperature wear resistance of the pure Ti substrates are greatly increased. For the pure Ti substrate, the wear behavior is dominated by adhesive wear, abrasive wear and severe plastic deformation, while both laser cladding coatings, involving only mild abrasive and fatigue wear, are able to prevent the substrates from severe adhesion and abrasive wear. In particular, the laser cladding NiCrBSi/WC-Ni composite coating shows better high temperature wear resistance than the NiCrBSi coating, which is due to the formation of a hard WC phase in the composite coating.  相似文献   

15.
A series of tungsten-gradually doped diamond-like carbon (DLC) films with functionally graded interlayer were prepared using a hybrid technique of vacuum cathodic arc/magnetron sputtering/ion beam deposition. With ‘compositionally graded coating’ concept, the deposition of wear-resistant carbon-based films with excellent adhesion to metallic substrate was realized. In the films, a functionally graded interlayer with layer sequence of Cr/CrN/CrNC/CrC/WC was first deposited onto the substrate, and then, a DLC layer doped with gradually decreasing content of W was coated on. The W concentration gradient along depth of the film was tailored by adjusting the W target current and deposition time. The characterized results indicate that the microstructural, mechanical and tribological properties of these films show a significant dependence on the W concentration gradient. A high fraction of W atom in carbon matrix can promote the formation of sp2 sites and WC1 − x nanoparticles. Applying this coating concept, strongly adherent carbon films with critical load exceeding 100 N in scratch test were obtained, and no fractures or delaminations were observed at the end of the scratched trace. The hardness was found to vary from 13.28 to 32.13 GPa with increasing W concentration. These films also presented excellent tribological properties, especially significantly low wear rate under dry sliding condition against Si3N4 ball. The optimum wear performance with friction coefficient of 0.19 and wear rate of 8.36 × 10−7 mm3/Nm was achieved for the tungsten-gradually doped DLC film with a graded W concentration ranging from 52.5% to 17.8%. This compositionally graded coating system might be a potentially promising candidate for wear-resistant carbon-based films in the demanding tribological applications.  相似文献   

16.
A new processing concept has been developed to produce nano-structured metal-matrix composite coatings. This method combines sol-gel and electroless plating techniques to prepare highly dispersive oxide nano-particle reinforced composite coatings. Transparent TiO2 sol was added into the standard electroless plated Ni-P solution at a controlled rate to produce Ni-P-TiO2 nano-composite coatings on Mg alloys. The coating was found to have a crystalline structure. The nano-sized TiO2 particles (∼ 15 nm) were well dispersed into the Ni-P coating matrix during the co-deposition process. This technique can effectively avoid the agglomeration of nano-particles in the coating matrix. As a result, the microhardness of the composite coatings were significantly increased to ∼ 1025 HV200 compared to ∼ 710 HV200 of the conventional composite coatings produced with solid particle mixing methods. Correspondingly, the wear resistance of the new composite coatings was also greatly improved.  相似文献   

17.
In order to improve the oxidation resistance of carbon/carbon (C/C) composites, a ZrSiO4 coating on SiC pre-coated C/C composites was prepared by a hydrothermal electrophoretic deposition process. Phase compositions and microstructures of the as-prepared ZrSiO4/SiC coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The anti-oxidation property and failure mechanism of the multi-layer coating were investigated. Results show that hydrothermal electrophoretic deposition is an effective route to prepare crack-free ZrSiO4 outer coatings. The multi-layer coating obviously exhibits two-layer structure. The inner layer is composed of SiC phase and the outer layer is composed of ZrSiO4 phase. The bonding strength between the outer layer coatings and C/C–SiC substrate are 30.38 MPa. The ZrSiO4/SiC coating displays excellent oxidation resistance and can protect C/C composites from oxidation at 1773 K for 332 h with a mass loss rate of only 0.48 × 10− 4 g/cm2·h. The mechanical properties of the specimens are 84.36 MPa before oxidation and 68.29 MPa after oxidation. The corresponding high temperature oxidation activation energy of the coated C/C composites at 1573–1773 K is calculated to be 119.8 kJ/mol. The oxidation process is predominantly controlled by the diffusion rate of oxygen through the ZrSiO4/SiC multi-coating. The failure of the coating is due to the formation of penetrative holes between the SiC bonding layer and the C/C matrix at 1773 K.  相似文献   

18.
Laser cladding is an effective technique to coat a metallic substrate with a layer of a different nature. It has been widely reported that the most important combined parameters controlling the quality of the coating are the specific energy (E) and the powder density (Ψ). In the present work, clad deposits of Ti6Al4V + 60 wt.% TiC were prepared on a Ti6Al4V substrate using an optimum combination of Ec = 24 J/mm2 and ψc = 3 mg/mm2. These experiments were performed using a laser power of 400 and 600 W, in order to study the effect of laser power on the properties of the clad. The microstructure, phase composition and nanohardness of the coatings were investigated by optical microscopy, scanning electron microscopy and X-ray diffraction. During laser processing, TiC can be partially converted to TiCX (X = 0.5) due mainly to the TiC dissolution into the laser-generated melting pool and subsequent precipitation during cooling. It was observed that the lower laser power limit reduces primary TiC dissolution but it also promotes secondary carbide alignment at the interface. On the other hand, the damage mechanism induced by high laser power is dominated by primary TiC particle cracking by the high stress concentration at the particle–matrix interface followed by ductile failure of the matrix. It is also remarkable that irradiance affects the TiC/TiCx ratio despite Ec and ψc are fixed and it determines hardness distribution inside the coating.  相似文献   

19.
a-CNx/TiN multilayer films were deposited onto high-speed steel substrates by pulsed laser ablation of graphite and Ti target alternately in nitrogen gas. The composition, morphology and microstructure of the films were characterized by energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. The tribological properties of the films in humid air were investigated using a ball-on-disk tribometer. The multilayer films consist of crystalline TiN, metallic Ti and amorphous CNx (a-CNx). With an increase in thickness ratio of CNx to bilayer, the hardness of multilayer film decreases, friction coefficient decreases from 0.26 to 0.135, and wear rate increases. The film with thickness ratio of CNx to bilayer of 0.47 exhibits a maximum hardness of 30 GPa and excellent wear rate of 2.5 × 10− 7 mm3 N− 1 m− 1. The formation of tribo-layer was observed at contact area of Si3N4 ball. The film undergoes the combined wear mechanism of abrasion wear and adhesion wear.  相似文献   

20.
Ti-coated SiC particles were developed to improve the wear resistance of Fe-Cu-Sn alloy metal matrices designed for diamond tools. The phase structure of the Ti-coated SiC particles was investigated by X-ray diffraction. Ti coating on SiC was composed of Ti5Si3, TiC, and Ti. Excellent interfacial bonding between SiC and the matrix was realized. The SiC/iron alloy composites, prepared by hot pressing at 820 °C, were studied by wear and bending strength tests, and scanning electron microscope. For the composites reinforced by uncoated SiC particles, the wear resistance was improved, but the bending strength decreased. The composites with Ti-coated SiC particles outperformed the composites with uncoated SiC particles in both wear resistance and bending strength tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号