首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ti-Si-N coatings were deposited on M2 steel by arc evaporation using a Ti-Si composite target in an industrial reactor. The films structure before and after heat treatment at 700 °C was characterised by XRD. In addition, two types of quantitative experiments were performed in thermobalance: oxidation rate was deduced from isothermal thermogravimetric analyses at 800 °C, while the temperature of oxidation beginning (Tc) was measured in dynamic mode. Tc was then calculated by a mathematical approximation based on the non-linear least square. The results were compared to those obtained using TiN and SiNx standards.Depending on the deposition conditions, ternary films have been deposited with an atomic ratio Si/Ti of 0.10 and 0.15. The hardness of the films was close to 40 GPa. Only the TiN phase was detected by XRD. The mean crystal size was estimated to be in the 6-8 nm range, which suggested the nanocomposite nature of the coatings. After air oxidation at 700 °C, it was found that this crystal size was not affected by the thermal treatment, indicating a good thermal stability of the structure. Moreover, incorporation of silicon into TiN-based coatings led to a drastic decrease of their oxidation rate, together with a shift of 200 °C of Tc. The high resistance of oxidation of Ti-Si-N films at elevated temperature is attributable to the network of refractory SiNx, which acted as a diffusion barrier for oxygen and insulated TiN nanograins from the aggressive atmosphere.  相似文献   

2.
This study reports on the wear properties at medium-high temperatures of TiAlSiN films deposited by cathodic arc evaporation on hot work steel substrates. The chemical composition and microstructure of the coatings were characterised by glow discharge optical emission spectroscopy, scanning electron microscopy and X-ray diffraction. The mechanical properties, i.e. hardness and elastic modulus were evaluated by nanoindentation, and the adhesion of the coatings was tested by scratch tests. Coatings with stoichiometries of Ti0.31Al0.1Si0.06N0.53 and Ti0.23Al0.12Si0.09N0.55 exhibit microstructures consisting of solid solutions of (Ti,Al,Si)N, where Al and Si replace Ti atoms. These films show high hardness and good adhesion strength to the hot work steels. Conversely, coatings with a stoichiometry of Ti0.09Al0.34Si0.02N0.55 show a wurtzite-like microstructure, low hardness and poor adhesion strength.The wear rates of the coatings were investigated by ball-on-disc experiments at room temperature, 200 °C, 400 °C and 600 °C, using alumina balls as counter surfaces. At room temperature, the films show wear rates of the same order of magnitude of TiN and TiAlN coatings. On the other hand, the wear rates of solid solution (Ti,Al,Si)N coatings measured at 200, and 400 °C are one order of magnitude smaller than those measured at room temperature due to the formation of oxide-containing tribofilms on the wear tracks. At 600 °C the wear rates increase but still keep smaller than those measured at room temperature, although this effect can be influenced by the softening of the steel substrates by over-tempering. EDS analyses revealed that, between 200 °C and 400 °C, the oxidation of the coating occurs only at the contact zone between the film and the counterpart body due to the sliding process.  相似文献   

3.
Diffusion aluminide coatings improve the high temperature oxidation resistance of Ti-alloys. This study evaluates the oxidation resistance of a Al3Ti type aluminide coating and a Pt-aluminide coating on Ti-alloy IMI-834, at 650, 750 and 850 °C under cyclic oxidation conditions in air. Both coatings provide good oxidation resistance, however, the extent of through-thickness cracking in coating and localized oxidation degradation of substrate increases with thermal cycling. At high temperature of 850 °C, TiO2 outgrowths emanate from these cracks, resulting in a prominent mud-crack pattern on the surface. The possible effect of such cracking on long-term oxidation properties of coatings has been discussed.  相似文献   

4.
3-μm thick Ti-Si-N coatings were deposited on polished X38CrMoV5 substrates by sputtering a composite Ti-Si target in Ar-N2 reactive mixture. Oxidation tests were performed in air at 700 °C during 2 h. Whatever the silicon content in the range 0-4 at.%, no silicon containing compound was detected by XRD before air oxidation and only the TiN phase was evidenced. The mean grain size estimated from the full width at half maximum of the TiN (111) diffraction peak was close to 10 nm. As commonly reported for Ti-Si-N films, the hardness showed a maximum at 51 GPa versus the Si content. After oxidation of the TiN film, XRD and micro-Raman analyses revealed the occurrence of the TiO2 rutile phase in the whole films thickness, indicating the total oxidation of the TiN film. On the other hand, the addition of silicon into the TiN-based coatings induced a strong improvement of the film oxidation resistance. Indeed, the oxide thickness was reduced to nearly 0.4 μm for films containing 1.2 at.% Si. Moreover, the silicon addition gave rise to a change in the structure of the oxide layer. In fact, weak diffraction peaks of the TiO2 anatase phase were detected by XRD. The presence of the anatase phase was clearly shown by micro-Raman spectroscopy, which is a very sensitive method to detect this TiO2 phase. The intensity of the anatase micro-Raman bands increased with the silicon concentration, whereas that of rutile decreased.  相似文献   

5.
Shape memory alloy (SMA) coatings of NiTi and NiTiHf have been deposited onto Si substrates using pulse DC sputtering. Coatings of NiTi with compositions containing 45 to 65 at.% Ti have been fabricated by co-sputtering NiTi with Ti. NiTiHf coatings with Hf compositions ranging from 2 to 30 at.% Hf have been fabricated by co-sputtering NiTi with Hf. XRD results reveal the as-deposited coatings as amorphous. A high temperature, 1100 °C anneal followed by a low temperature, 550 °C anneal was employed to crystallise the coatings. The XRD then shows the coatings to be martensitic at room temperature.Two sets of samples were produced for characterisation; one set was used for indentation studies and the other set used to prepare freestanding films required for differential scanning calorimetry (DSC) studies.Using the DSC, a NiTi coating containing 52 at.% Ti shows an endothermic austenite peak phase transformation, (Ap) at around 105 °C and an exothermic peak martensite phase transformation, (Mp) at 65 °C, resulting in a hysteresis of 40 °C. For a NiTi coating containing 65 at.% Ti the hysteresis remained unchanged at 40 °C, but there was a decrease in the phase transformation enthalpies when compared with the coatings containing 52 at.% Ti. Calculated phase transformation enthalpies in the NiTi coatings ranged from 6 to 13 J/g for the austenite phase and − 8 to − 11 J/g for the martensite phase.The NiTiHf coating shows SMA behaviour for a film containing 30 at.% Hf. DSC reveals an ‘R’ phase transition in this film. It is understood that this phase is present in films that have high internal stresses and is understood to nucleate near Ti3Ni4 precipitates. Phase transformation temperatures occur at 98 °C and 149 °C during heating and occur at 99 °C during cooling. Phase transformation enthalpies range between 2 and 3 J/g for the austenite phase and − 7 J/g for the martensite phase.A scratch tester equipped with a 5 mm spherical tip has been utilised with loads ranging from 1 to 5 N to determine the recovery properties of the films. The results in this study conclude that NiTi films containing 65 at.% Ti deform 3 times more than films containing 52 at.% Ti. For NiTiHf thin films, increasing the Hf composition from 2 at.% to 30 at.%, doubled the deformation measured in the coatings.  相似文献   

6.
The aim of this work was a comparative investigation of the structure and properties of Al- and Cr-doped TiSiCN coatings deposited by magnetron sputtering of composite TiAlSiCN and TiCrSiCN targets produced by self-propagating high-temperature synthesis method. Based on X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy data, the Al- and Cr-doped TiSiCN coatings possessed nanocomposite structures (Ti,Al)(C,N)/a-(Si,C) and (Ti,Cr)(C,N)/a-SiCxNy/a-C with cubic crystallites embedded in an amorphous matrix. To evaluate the thermal stability and oxidation resistance, the coatings were annealed either in vacuum at 1000, 1100, 1200, and 1300 °C or in air at 1000 °C for 1 h. The results obtained show that the hardness of the Al-doped TiSiCN coatings increased from 41 to 46 GPa, reaching maximum at 1000 °C, and then slightly decreased to 38 GPa at 1300 °C. The Cr-doped TiSiCN coatings demonstrated high thermal stability up to 1100 °C with hardness above 34 GPa. Although both Al- and Cr-doped TiSiCN coatings possessed improved oxidation resistance up to 1000 °C, the TiAlSiCN coatings were more oxidation resistant than their TiCrSiCN counterparts. The TiCrSiCN coatings showed better tribological characteristics both at 25 and 700 °C and superior cutting performance compared with the TiAlSiCN coatings.  相似文献   

7.
Coatings of partially Y2O3-stabilized ZrO2 (PSZ) (Y > 2 at.%) and double layered TiN/PSZ films were deposited on Si wafers at 700 °C from zirconium tetra-buthoxide (ZTBO), yttrium tri-buthoxide (YTBO) and/or titanium tetra-ethoxide by chemical vapor deposition with H2O in a thermal Ar/N2/H2 plasma. A small amount of H2O was fed into the plasma to oxidize the ZTBO and YTBO to produce the PSZ coatings. Double layered TiN/PSZ film coatings were deposited without severe oxidation of under-layered TiN by controlling the feeding rate of H2O. The product phases were identified by grazing incidence X-ray-diffractometry. The surfaces and cross-sections of the PSZ and double layered TiN/PSZ coatings were observed by scanning electron microscopy. An in-depth semi-quantitative analysis of the double layered TiN/PSZ films was performed by X-ray photoelectron spectroscopy, revealing the changes in the concentrations of Zr, Y, Ti, O, and N with depth. The effect of the Y content in mixed solutions of ZTBO and YTBO on the evolution of ZrO2 is examined. It is proposed that the controlled feed rate of H2O is effective in producing coatings of PSZ on TiN films without severe oxidation.  相似文献   

8.
Hydrothermal corrosion of thin TiAlN and CrN PVD films (of 3μm thickness) in 100 MPa water over a temperature range of 20-950 °C is compared to the behavior of TiN films over the same T-P conditions. Corrosion resistance increases in the sequence TiN → TiAlN → CrN. A FeTiO3 (ilmenite) layer on the surface of the TiAlN film is almost chromium-free and provides protective properties up to 700 °C, whilst ülvospinel formation leads to spallation of oxide scale due to high level growth stresses. Formation of a very stable spinel scale on the surface of the CrN films provides long-term corrosion protection in 100 MPa water up to 800 °C. Nitride films on low-alloyed steel can substitute for expensive super alloy in wet air oxidation systems, with working temperatures up to 700 °C in the case of TiAlN, or 800 °C in the case of CrN coatings.  相似文献   

9.
Superhard nanostructured coatings, prepared by plasma-assisted chemical vapour deposition (PACVD) and physical vapour deposition (PAPVD) techniques, such as vacuum arc evaporation and magnetron sputtering, are receiving increasing attention due to their potential applications for wear protection. In this study nanocomposite (TiAl)BxNy (0.09 ≤ x ≤ 1.35; 1.07 ≤ y ≤ 2.30) coatings, consisting of nanocrystalline (Ti,Al)N and amorphous BN, were deposited onto Si (100), AISI 316 stainless steel and AISI M2 tool steel substrates by co-evaporation of Ti and hot isostatically pressed (HIPped) Ti-Al-B-N material from a thermionically enhanced twin crucible electron-beam (EB) evaporation source in an Ar plasma at 450 °C. The coating stoichiometry, relative phase composition, nanostructure and mechanical properties were determined using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), in combination with nanoindentation measurements. Aluminium (∼ 10 at.% in coatings) was found to substitute for titanium in the cubic TiN based structure. (Ti,Al)B0.14N1.12 and (Ti,Al)B0.45N1.37 coatings with average (Ti,Al)N grain sizes of 5-6 nm and either ∼ 70, or ∼ 90, mol% (Ti,Al)N showed hardness and elastic modulus values of ∼ 40 and ∼ 340 GPa, respectively. (Ti,Al)B0.14N1.12 coatings retained their ‘as-deposited’ mechanical properties for more than 90 months at room temperature in air, comparing results gathered from eight different nanoindentation systems. During vacuum annealing, all coatings examined exhibited structural stability to temperatures in excess of 900 °C, and revealed a moderate, but significant, increase in hardness. For (Ti,Al)B0.14N1.12 coatings the hardness increased from ∼ 40 to ∼ 45 GPa.  相似文献   

10.
The article reports on the effect of addition of Ti into Al2O3 films with Ti on their structure, mechanical properties and oxidation resistance. The main aim of the investigation was to prepare crystalline Al-Ti-O films at substrate temperatures Ts ≤ 500 °C. The films with three different compositions (41, 43 and 67 mol% Al2O3) were reactively sputtered from a composed Al/Ti target and their properties were characterized using X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), microhardness testing, and thermogravimetric analysis (TGA). It was found that (1) the addition of Ti stimulates crystallization of Al-Ti-O films at lower substrate temperatures, (2) Al-Ti-O films with a nanocrystalline cubic γ-Al2O3 structure, hardness of 25 GPa and zero oxidation in a flowing air up to ∼ 1050 °C can be prepared already at low substrate temperature of 200 °C, and (3) the crystallinity of Al-Ti-O films produced at a given temperature improves with the increasing amount of Ti. The last finding is in a good agreement with the binary phase diagram of the TiO2-Al2O3 system.  相似文献   

11.
Plasma electrolytic oxidation (PEO) is a unique surface treatment technology which is based on anodic oxidation forming ceramic oxide coatings on the surface of light alloys such as Mg, Al and Ti. In the present study, PEO coatings prepared on AZ91D, AZ31B, AM60B and AM50B Mg alloys have been investigated. Surface morphology and elemental composition of coatings were determined using scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS). SEM results showed that the coating exhibited a porous top surface layer and a subsequent dense layer with micro-pores and shrinkage cracks. Phase analysis of coatings was carried out by X-ray diffraction (XRD). XRD analyses indicated that PEO coatings on AZ alloys had higher amount of Periclase (MgO) followed by the presence of Spinel (MgAl2O4) e.g. on the AZ91D alloy compared to that on AM series alloys. In order to examine the effect of substrate composition on adhesion strength of PEO coating scratch tests were carried out. Electrochemical corrosion tests were undertaken by means of potentiodynamic polarization technique in 3.5% NaCl solution at room temperature (20 ± 2 °C). Corrosion test results indicated that the corrosion rates of coated Mg alloys decreased by nearly two orders of magnitude as compared to bare Mg alloys. PEO coatings on AZ series alloys showed better corrosion resistance and higher adhesion properties than AM series alloys. In addition to the PEO processing parameters, such are mainly attributes of the compositional variations of the substrate alloys which are responsible for the formation, phase contents and structural properties of the PEO coatings.  相似文献   

12.
Ti-O, Ti-O-C and Ti-O-C-N thin films have been synthesized successfully via metalorganic chemical vapor deposition (MOCVD) technique. Tetrabutyl orthotitanate (TBOT) is used as a precursor in presence of Ar, H2, and N2 as process gases. By controlling deposition temperature and type of process gases, it was possible to control the composition of the deposited films. The deposited films are composed mainly of Ti and O when H2 is used as a process gas in the temperature range 350-500 °C. As the temperature increased up to 600 °C, thin films containing anatase (TiO2) and titanium carbide (TiC) phases are deposited and confirmed by XRD and EDX analyses. As the temperature increased to 750 °C, a transformation from anatase to rutile phase (TiO2) is started and clearly observed from XRD patterns. Titanium nitride (Ti2N and TiN) phase in addition to TiO2 and TiC phases are formed at 600-1000 °C in presence of nitrogen as a process gas. SEM images for all investigated film samples showed that the films are deposited mainly in the form of spherical particles ranged from few nano- to micrometer in size with some additional special features regardless the type of the process gas. Films containing carbon and nitrogen show higher hardness than that containing only oxygen. The obtained results may help in better understanding and controlling film composition and its phase formation in Ti-O-C-N system by MOCVD technique.  相似文献   

13.
Ti/TiN multilayered coatings of 200 layers with the thickness of 1.5 μm were deposited by a reactive DC magnetron sputtering technique using a mixture of Ar and N2 gas. XRD technique was employed to elucidate the structural parameters. The presence of different phases like TiN, TiOxNy and TiO2 were confirmed by XPS analyses. The observation of longitudinal optic (LO) phonon modes in the Raman spectra confirmed the highly crystalline nature of the deposited films. A microhardness value of 25.5 GPa was observed for Ti/TiN multilayers. The observed lower friction coefficient value for the Ti/TiN multilayers on mild steel (MS) indicated that the stack layers have better wear resistance property. Results from the electrochemical polarization and impedance studies showed the favorable behavior of the Ti/TiN multilayers, which have improved the corrosion resistance property of MS in 3.5% NaCl solution. The results of this study demonstrate that these multilayers can improve the corrosion resistance of mild steel substrates.  相似文献   

14.
In order to improve the oxidation resistance of silicide coatings on Nb silicide based alloys, Y-modified silicide coatings were prepared by co-depositing Si and Y at 1050, 1150 and 1250 °C for 5-20 h, respectively. It has been found that the coatings prepared by co-depositing Si and Y at 1050 and 1150 °C for 5-20 h as well as at 1250 °C for 5 h were composed of a thick (Nb,X)Si2 (X represents Ti, Cr and Hf elements) outer layer and a thin (Nb,X)5Si3 inner layer, while the coatings prepared by co-depositing Si and Y at 1250 °C for 10-20 h possessed a thin outer layer composed of (Ti,Nb)5Si3 and Ti-based solid solution, a thick (Nb,X)Si2 intermediate layer and a thin (Nb,X)5Si3 inner layer. EDS analyses revealed that the content of Y in the (Nb,X)Si2 layers of all the coatings was about 0.34-0.58 at.% while that in the outer layers of the coatings prepared by co-depositing Si and Y at 1250 °C for 10-20 h was about 1.39-1.88 at.%. The specimens treated by co-depositing Si and Y at 1250 °C for 10 h were selected for oxidation test. The oxidation behavior of the coating specimens at 1250 °C indicated that the Si-Y co-deposition coating had better oxidation resistance than the simple siliconized coating because the oxidation rate constant of the Si-Y co-deposition coating was lower than that of the simple siliconized coating by about 31%. The scale developing on the Si-Y co-deposition coating consisted of a thicker outer layer composed of SiO2 and TiO2 and a thinner SiO2 inner layer.  相似文献   

15.
MgO coating is formed on magnesium alloy by anodic electrodeposition in 6 M KOH solution, whereas Mg(OH)2 coating is produced by anodization in 10 M KOH solution, which could be successively converted to MgO by calcination in air at 450 °C. The evolution of morphology, structure and composition of anodic film obtained on Mg alloy is investigated using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD). Potentiodynamic polarization measurements show that the as-grown MgO protective coatings are very effective in improving the corrosion resistance of magnesium alloy compared to bare metallic magnesium.  相似文献   

16.
TiVCrAlSi high entropy alloy coatings were deposited on Ti-6Al-4V alloy by laser cladding. SEM, XRD and EDS analyses show that, the as-clad coating is composed of (Ti,V)5Si3 and a BCC solid solution. After annealing at 800 °C for 24 h under vacuum, the coating is composed of (Ti,V)5Si3, Al8(V,Cr)5, and a BCC solid solution. The temperature-dependent phase equilibrium for the coating material calculated by using the CALPHAD method, indicates that above 880 °C the stable phases existing in the coating material are a BCC solid-solution and (Ti,V)5Si3. When the temperature is below 880 °C, the stable phases are (Ti,V)5Si3, Al8(V,Cr)5, and a BCC solid solution. In order to validate the calculation results, they were compared with TiVCrAlSi alloy samples prepared by arc melting, encapsulated in quartz tubes under vacuum, annealed at 400-1100 °C for 3 days and water-quenched. XRD analysis shows that the experimental phase composition agrees with the thermodynamic calculations. After vacuum annealing, there is a small increase of hardness for the laser clad TiVCrAlSi coating, which is due to the formation of Al8(V,Cr)5. The oxidation tests show that the TiVCrAlSi coating effectively improves the oxidation resistance of Ti-6Al-4V at 800 °C in air. The formation of a dense and adherent scale consisting of SiO2, Cr2O3, TiO2, Al2O3 and a small amount of V2O5 is supposed to be responsible for the observed improvement of the oxidation resistance.  相似文献   

17.
TiAlSiN/Si3N4 multilayer coatings which have different separate layer thicknesses of TiAlSiN or Si3N4 were deposited onto glass sheets, single-crystal silicon wafers and polished WC-Co substrates by reactive magnetron co-sputtering. The morphology, crystalline structure and thickness of the as-prepared multilayer coatings were characterized by TEM, SEM, XRD and film thickness measuring instrument. The mechanical properties of the coatings were evaluated by a nanoindenter. The effects of monolayer thickness on the microstructure and properties of TiAlSiN/Si3N4 multilayer coatings were explored. The coatings showed the highest hardness when the thickness of Si3N4 and TiAlSiN monolayers was 0.33 nm and 5.8 nm, respectively. The oxidation characteristics of the coatings were studied at temperatures ranging from 700 °C to 900 °C for oxidation time up to 20 h in air. It was found that the coatings displayed good oxidation resistance.  相似文献   

18.
Single-layered TiN and functionally graded Ti(C,N) coatings were magnetron sputtered to a thickness of about 1 μm, and their oxidation behavior was studied. The Ti(C,N) coating oxidized as fast as the TiN coating, forming TiO2 as an oxide layer. The nitrogen in the TiN and Ti(C,N) coatings tended to escape from the coating via the TiO2 layer into the air. The carbon in the Ti(C,N) coating also had strong tendency to escape. Even before the complete oxidation of the coatings, the retained coating layer and the Ti-substrate were strongly enriched with oxygen.  相似文献   

19.
In this work, we have studied the influence of the coating design and composition on the oxidation behavior of AlxCr1−xN (x = 0.70) coatings. In particular, we have studied the effect brought about by the deposition of an additional subsurface titanium nitride barrier layer as well as by the doping of the AlCrN-based coatings by tungsten, boron and silicon. The coatings studied have been deposited using the cathodic arc vacuum (CAV) technique. The multilayered AlCrN/TiN coatings with TiN sublayer were oxidized in air at 900 °C over 3 h and then analyzed by Glow Discharge Optical Emission Spectroscopy (GDOES) and X-ray photoelectron spectroscopy (XPS). Oxidation tests were performed in air at 900 and 1100 °C for the AlCrN and AlCrWN, AlCrSiN, and AlCrBN coatings. In each case weight gain was measured and the surface morphology of the oxidized samples were studied using Secondary Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The results obtained showed that the oxidation behavior of the aluminum rich AlCrN-based coatings could be improved in two ways: (1) by controlling the chromium outward diffusion rate in multi-layered coatings and (2) by alloying the AlCrN-based coatings with Si. Both improvements are related to the enhancement of the protective oxide film formation.  相似文献   

20.
Ti-Zr-N coatings were formed by the method of vacuum arc deposition using combined Ti and Zr plasma flows in a N2 atmosphere at different ratios of arc currents of Ti and Zr cathodes. After deposition, obtained samples were annealed in vacuum at the temperature of 850 °C. The element and phase composition, residual stresses and nanohardness were studied by Auger-Electron Spectroscopy, X-ray diffraction (XRD) and nanoindentation, respectively.XRD analysis reveals the formation of ternary Ti-Zr-N nitride coatings with the structure of solid solutions. It is shown that Ti-Zr-N coatings possess high hardness in comparison with TiN and ZrN binary nitrides. An increase in hardness is observed with increasing Zr content. However, it is established that after annealing coatings keep better stability of hardness with decrease of Zr content. The intrinsic stress in the as-deposited coatings is found to be largely compressive (− 4 GPa) and almost independent of Zr content, but much higher than in ZrN and TiN binary nitrides (− 2 GPa). After annealing, a significant stress relaxation is observed in all coatings due to relief of growth-induced point defects. Stress analysis on as-grown and annealed samples enabled us to determine the stress-free lattice parameter a0. This latter is expanded by ∼ 0.4-0.7% as compared to Vegard's law.The thermal stability of Ti-Zr-N coatings will be discussed in terms of evolution and interdependence between structure, composition and hardness after annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号