共查询到20条相似文献,搜索用时 0 毫秒
1.
改进的最小均方自适应滤波算法 总被引:1,自引:0,他引:1
针对传统的固定步长最小均方(LMS)算法应用于雷达杂波自适应滤波器系统存在收敛速度与收敛精确度相矛盾的问题,提出一种新的变步长LMS自适应滤波算法。在其基础步长迭代公式中,通过组合自相关误差与前一步长因子来实时更新迭代下一步长因子的方法,达到具有较快的收敛速度和较小的失调,并且不受已经存在的不相关噪声的干扰的效果。仿真结果表明,所提方法的实验效果与传统固定步长LMS算法及已有算法相比,在收敛速率、收敛精度、抑制噪声方面都有很大的改善,证明所提算法是有效、可行的,且与理论分析一致。 相似文献
2.
针对输入信号向量序列之间的相关性将显著降低LMS算法的性能这一问题,从算子的角度出发,提出了一种新的去相关LMS自适应滤波算法。通过将最新输入向量向以前所有时刻的输入向量序列所张成的线性空间的零空间作正交投影,达到提取新信息的目的,并以提取的新息作为LMS算法的更新方向向量。仿真分析表明,新算法具有收敛速度快、输出误差小以及对信噪比不敏感等特点,并且采用较低的滤波器阶数即可得到良好的滤波效果,同时提高算法的运算效率。 相似文献
3.
在水声通信中,信道的多径效应会造成严重的码间串扰(ISI),而现有的均衡算法在处理ISI问题时存在收敛速度慢、稳态误差大、算法复杂不易于硬件移植等问题,为此结合判决反馈均衡器结构前向均衡(FFE)与判决均衡结构(DFE),提出了一种基于反余弦步长函数和三参数调整因子的变步长最小均方(LMS)算法。首先对三参数因子α、β、r进行算法仿真,优化算法性能,与固定步长LMS算法、基于修正反正切的变步长LMS算法以及基于双曲正割函数的变步长LMS算法的收敛性能和稳态误差进行仿真比较,结果显示:所提算法的收敛速度较固定步长LMS算法提高了57.9%,稳态误差下降5 dB;较双曲正割LMS算法和修正反正切LMS算法提高了26.3%和15.8%,并且算法的稳态误差下降了1~2 dB。最后,将算法移植于信号处理模块,进行水下实验,结果表明,水声信道造成的ISI经过均衡器后,信号得以恢复,能够实际克服多径效应造成的水声信道ISI问题。 相似文献
4.
In this paper a novel method is introduced based on the use of an unsupervised version of kernel least mean square (KLMS) algorithm for solving ordinary differential equations (ODEs). The algorithm is unsupervised because here no desired signal needs to be determined by user and the output of the model is generated by iterating the algorithm progressively. However, there are several new approaches in literature to solve ODEs but the new approach has more advantages such as simple implementation, fast convergence and also little error. Furthermore, it is also a KLMS with obvious characteristics. In this paper the ability of KLMS is used to estimate the answer of ODE. First a trial solution of ODE is written as a sum of two parts, the first part satisfies the initial condition and the second part is trained using the KLMS algorithm so as the trial solution solves the ODE. The accuracy of the method is illustrated by solving several problems. Also the sensitivity of the convergence is analyzed by changing the step size parameters and kernel functions. Finally, the proposed method is compared with neuro-fuzzy [21] approach. 相似文献
5.
A modified quantized kernel least mean square (M-QKLMS) algorithm is proposed in this paper, which is an improvement of quantized kernel least mean square (QKLMS) and the gradient descent method is used to update the coefficient of filter. Unlike the QKLMS method which only considers the prediction error, the M-QKLMS method uses both the new training data and the prediction error for coefficient adjustment of the closest center in the dictionary. Therefore, the proposed method completely utilizes the knowledge hidden in the new training data, and achieves a better accuracy. In addition, the energy conservation relation and a sufficient condition for mean-square convergence of the proposed method are obtained. Simulations on prediction of chaotic time series show that the M-QKLMS method outperforms the QKLMS method in terms of steady-state mean square errors. 相似文献
6.
本文主要介绍最小均方算法的性能特点。基于最小均方算法的自适应滤波器电路结构简单且实时跟踪性能好。自适应滤波器的重要特性就在于它能够在未知环境申有效工作并能够跟踪输入信号的时变特性。理论分析和仿真结果表明,在低信噪比的前提下,自适应滤波器具有良好的信号处理性能,并对系统发生的突变表现出较强的鲁棒性。 相似文献
7.
This paper proposes a novel hybrid residual least mean square (HRLMS) algorithm for adaptive filtering followed by an antenna beamformer using 16‐element linear array. The hybridization process involves a switching between the residual‐LMS (RLMS) and the conventional‐LMS (CLMS) algorithms after the eighth iteration, if the square errors for four consecutive iterations are less than a threshold. The novelty of HRLMS lies in estimating best step size factor through residuals for speedy convergence followed by the CLMS switching for minimum steady state error (SSE). The novelty also includes in realizing a real‐time antenna beamformer with significant sidelobe level (SLL) reduction and improved interference nulling by integration of HRLMS and space selective digital filter (SSDF). The adaptive filter and smart beamformer, based on HRLMS and HRLMS‐SSDF have been implemented on TMS320VC5416 digital signal processor. The comparative performance evaluation of HRLMS has been done for convergence speed, SSE, interference nulling and SLL reduction with the existing variable step size LMS (VSSLMS) algorithms. The iteration count for convergence has been reduced by about 50% with paltry additional computational burden over the other VSSLMS algorithms. The HRLMS‐SSDF provide attenuations of about 76, 33, and >50 dB, respectively for interfering signals, first SLL and higher order SLLs of beamformer. 相似文献
8.
9.
A bias-compensated constrained least mean square (BC-CLMS) adaptive filter algorithm for noisy input is proposed. To derive the proposed algorithm, we present a novel cost function whose gradient vector is unbiased. Thereby, the proposed algorithm can mitigate the effect of input noise and obtain an unbiased estimation. Then, the detail performance analysis of the proposed algorithm is also provided. Finally, simulations are carried out to illustrate the advantage of the proposed algorithm. In addition, the correctness of performance analysis is also verified by simulations. 相似文献
10.
Boosting algorithms are a class of general methods used to improve the general performance of regression analysis. The main idea is to maintain a distribution over the train set. In order to use the given distribution directly, a modified PLS algorithm is proposed and used as the base learner to deal with the nonlinear multivariate regression problems. Experiments on gasoline octane number prediction demonstrate that boosting the modified PLS algorithm has better general performance over the PLS algorithm. 相似文献
11.
Boosting algorithms are a class of general methods used to improve the general performance of regression analysis. The main idea is to maintain a distribution over the train set. In order to use the given distribution directly, a modified PLS algorithm is proposed and used as the base learner to deal with the nonlinear multivariate regression problems. Experiments on gasoline octane number prediction demonstrate that boosting the modified PLS algorithm has better general performance over the PLS algorithm. 相似文献
12.
为了有效融合多传感器冗余系统量测信息,使状态的估计值更接近于状态的真实值,实现高精度和高可靠性的状态估计,采取了基于最优加权的最小二乘算法、有限窗加权的最小二乘算法和自学习加权最小二乘算法,分别对多传感器实测数据进行融合处理,融合后数据的方差大幅度降低,估计精度显著提高。并与传统的最小二乘算法进行了仿真对比,结果表明,这3种方法较最小二乘算法融合精度更高,其中,自学习加权的最小二乘融合算法既考虑了历史数据的作用,又考虑了环境噪声和新的采样值的影响,增强了对噪声检测的敏感性,估计效果较好。 相似文献
13.
针对传统相关旋转(CR)算法放大噪声的问题,利用拉格朗日函数最小化接收信号与发射信号间的误差,通过贝叶斯理论和信道统计特性计算不完美信道状态信息,设计了信道状态信息(CSI)完美和不完美两种情况下基于最小均方误差(MMSE)准则的CR预编码算法的系统方案。分析与仿真结果表明,与传统迫零(ZF)准则下的CR算法相比较:信道状态信息完美时设计方案在同一信噪比(SNR)下误码率性能提高2~3dB;信道状态信息不完美时系统误码性能也有显著的提高。 相似文献
14.
为了进一步提高图像压缩效率和质量,提出一种离散小波变换(DWT)和最小二乘支持向量机(LSSVM)相融合的图像压缩方法(DWT-LSSVM)。采用DWT对图像分解,得到低频系数和高频系数,采用LSSVM归学习逼近高频系数,并采用混沌粒子群算法对LSSVM参数进行优化,对支持向量、权重和低频系数进行编码,得到数据压缩数据流。仿真结果表明,DWT-LSSVM获得了较高的压缩比,可以较好满足图像传输的实时性要求。 相似文献
15.
Science China Information Sciences - This paper considers the finite-time drive-response synchronization of stochastic nonlinear systems consisting of continuous-time and discrete-time subsystems.... 相似文献
16.
针对Volterra非线性滤波算法计算复杂度呈幂级数增加的问题,提出了一种α稳定分布噪声下的基于集员滤波的二阶Volterra自适应滤波新算法。由于集员滤波的目标函数考虑了所有输入和期望输出的信号对,通过误差幅值的p次方的门限判决,更新Volterra滤波器的权向量,不仅有效降低了算法复杂度,而且提高了自适应算法对输入信号相关性的鲁棒性;并推导给出了权向量的更新公式。仿真结果表明,该算法计算复杂度低、收敛速度快,对噪声及输入信号相关性有较强的鲁棒性。 相似文献
17.
This work presents the turning process of AISI H13 hardened steel with the PCBN 7025 tool, considering six output variables: tool life, machining total cost, surface roughness, machining force, sound pressure level, and specific cutting energy. Several problems are encountered in engineering processes that have adverse effects on the reliability of complex engineering systems. Hence, the aim of this work is to optimize the hardened steel turning process by applying mathematical methods to reduce dimensionality and eliminate the correlation between the multiple responses. The resultant latent response surfaces and their respective targets constitute the normalized multivariate mean square error (MMSE) function that is minimized by the normal boundary intersection (NBI) method. Furthermore, a fuzzy algorithm is applied to identify the best solution from several feasible solutions of the Pareto frontier that is compared with the performances of normalized normal constraint, arc homotopy length, global criterion method, and desirability method. The results show that NBI-MMSE has a higher performance than the other methods. In addition, NBI-MMSE is tested with benchmark functions to evaluate its effectiveness and robustness. Therefore, NBI-MMSE identifies the dynamics of the turning process of AISI H13 steel by revealing the optimal solutions for the input process parameters. 相似文献
18.
19.
A multi-modal genetic algorithm using a dynamic population concept is introduced. Each image point is assigned a label and for a chromosome to survive, it must have at least one image point with its label. In this way, the genetic algorithm dynamically segments the scene into one or more objects and the background noise. A Repeated Least Square technique is applied to enhance the convergence performance. The integrated algorithm is tested using a 6 degrees of freedom template matching problem, and it is applied to some images that are challenging for genetic algorithm applications. 相似文献
20.
传统的线性最小均方误差(LMMSE)信道估计要求已知信道的统计特性,而实际应用中无线信道的统计特性往往是不可知的.针对无线信道的不确定性,根据时域信道上能量分布的稀疏性特点,在最小二乘(LS)算法的基础上提出了一种改进的LMMSE信道估计算法.该算法从当前信道置信度较高的频率响应出发,把相邻子载波信道估计误差的比值作为信道响应的加权系数,然后通过加权平均的方法计算出多径信道下的信道响应.该算法避免了繁琐的矩阵求逆与分解运算,能够有效降低算法复杂度.实验结果表明,所提算法总体性能优于LS算法及经过奇异值分解的线性最小均方误差(SVD-LMMSE)估计算法,且其误码率接近于传统的LMMSE算法. 相似文献