首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, effects of embossing temperature, time, and force on production of a microfluidic device were investigated. Polymethyl methacrylate (PMMA) substrates were hot embossed by using a micromilled aluminum mold. The process parameters were altered to observe the variation of replication rate in width and depth as well as symmetry of the replicated microfluidic channels. Analysis of variance (ANOVA) on the experimental results indicated that embossing temperature was the most important process parameter, whereas embossing time and force have less impact. One distinguishing aspect of this study is that, the channels were observed to be skewed to either side of the channel depending on the location of the protrusions on the mold. The mechanism of the skewness was investigated by finite element analysis and discussed in detail. Results showed that the skewness depends on the flow characteristics of the material and could be reduced by increasing the embossing temperature. The best replication rates were obtained at parameter settings of 115°C, 10?kN, and 8?min for the molds with minimum 56?µm wide features of 120?µm depth. We also showed that the fabricated channels could be successfully sealed by solvent-assisted thermo-compressive bonding at 85°C under 5.5?kN force.  相似文献   

2.
采用热压和键合的方法制作玻璃和有机聚合物(PMMA)芯片,对玻璃和PMMA芯片在高压直流电场作用下的伏安特性进行了研究和分析。实验表明,玻璃芯片的伏安线性区域为1100V,PMMA芯片为700V,由于玻璃的导热性能优于PMMA,所以玻璃芯片的伏安线性区域大于PMMA芯片。在此线性段内,根据基尔霍夫电流定律将芯片简化为等效电阻模型,研究了分离电压以及分离焦耳热对芯片分离效果的影响因素,为微流控芯片的优化设计提供了理论依据。  相似文献   

3.
Methods for fabricating poly(methyl methacrylate) microchips using a novel two-stage embossing technique and solvent welding to form microchannels in microfluidic devices are presented. The hot embossing method involves a two-stage process to create the final microchip design. In its simplest form, a mold made of aluminum is fabricated using CNC machining to create the desired microchannel design. In this work, two polymer substrates with different glass transition temperatures (Tg), polyetherimide (PEI) and poly(methyl methacrylate) (PMMA), were used to make the reusable secondary master and the final chip. First, the aluminum mold was used to emboss the PEI, a polymeric substrate with Tg approximately 216 degrees C. The embossed PEI was then used as a secondary mold for embossing PMMA, a polymeric substrate with a lower Tg ( approximately 105 degrees C). The resulting PMMA substrate possessed the same features as those of the aluminum mold. Successful feature transfer from the aluminum mold to the PMMA substrate was verified by profilometry. Bonding of the embossed layer and a blank PMMA layer to generate the microchip was achieved by solvent welding. The embossed piece was first filled with water that formed a solid sacrificial layer when frozen. The ice layer prevented channel deformation when the welding solvent (dichloroethane) was applied between the two chips during bonding. Electrophoretic separations of fluorescent dyes, rhodamine B (Rh B) and fluorescein (FL), were performed on PMMA microchips to demonstrate the feasibility of the fabrication process for microreplication of useful devices for separations. The PMMA micro-chip was tested under an electric field strength of 705 V cm-1. Separations of the test mixture of Rh B and FL generated 55 500 and 66 300 theoretical plates/meter, respectively.  相似文献   

4.
A high-thermal-resistance polymer-based flexible imprint mold was developed to be used in a hot embossing process. This mold was readily replicated in a UV curing imprint process and can be used as a mold for hot embossing and thermally curing imprint processes. The nano-sized pattern of this mold was not degraded by soaking at 350 degrees C for 10 min and the pattern fidelity was maintained after 10 separate cyclic heating tests between 0 degrees C and 350 degrees C. The substrate of this flexible mold was PI film, and a UV-cured polyurethane acrylate (PUA) layer was used to form the nano-scale patterns. The durability of this polymeric mold was tested by repetitive hot embossing processes. Nano-scale patterns of the mold were readily transferred to a PMMA layer coated onto a Si substrate by hot embossing lithography at 180 degrees C. After 10 cycles of hot embossing processes, no damage or degradation was observed in the flexible polymer mold. Using this polymer mold, patterns as small as 50 nm were successfully transferred to a Si substrate. Due to the flexibility of the polymer mold, nano-scale patterns were successfully transferred to a non-flat acryl substrate by hot embossing lithography.  相似文献   

5.
A new method for thermally bonding poly(methyl methacrylate) (PMMA) substrates to form microfluidic systems has been demonstrated. A PMMA substrate is first imprinted with a Si template using applied pressure and elevated temperature to form microchannel structures. This embossing method has been used to successfully pattern over 65 PMMA pieces using a single Si template. Thermal bonding for channel enclosure is accomplished by clamping together an imprinted and a blank substrate and placing the assembly in boiling water for 1 h. The functionality of these water-bonded microfluidic substrates was demonstrated by performing high-resolution electrophoretic separations of fluorescently labeled amino acids. Testing of bond strength in four microdevices showed an average failure pressure of 130 kPa, which was comparable to the bond strength for devices sealed in air. Subsequent profilometry of separated substrates revealed that the dimensions of the channels were well preserved during the bonding process. This new methodology for generation of microfluidic constructs should facilitate the permanent incorporation of hydrated, molecular size-selective membranes in microdevices, thus circumventing problems associated with membrane swelling in microfluidic systems upon exposure to water.  相似文献   

6.
利用低于临界振幅下的超声波作用在聚合物上仅产生表面热的特点,结合PMMA在异丙醇(IPA)中的温变溶解特性,提出了一种基于局部溶解性激活的超声波聚合物微流控芯片键合方法.理论分析表明当超声振幅小于临界振幅时,只有器件接触表面产生局部表面热,而且在70℃附近IPA对PMMA的溶解性才具有良好的激活作用.在试验研究中,利用精密加工法和热压法制作了带面接触式导能筋结构和80μm×80μm微通道的PMMA微流控芯片基片.在超声振幅为13μm、键合时间8 s、键合压力300 N的条件下进行了键合试验.结果表明,芯片拉伸强度达2.25 MPa,微通道的承压能力超过800 kPa,键合后导能筋无熔融,微沟道变形率小于2%,键合时间仅为8s.该方法的键合强度和键合效率明显高于传统的键合方法,而微结构的变形率却较小,故可作为一种具有产业化前景的聚合物MEMS器件快速封接方法.  相似文献   

7.
The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag–Cu–Ti alloy and at 880 °C with a Cu–Sn–Ti–Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm−1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.  相似文献   

8.
The occurrence of heavy metal ions in food chain is appearing to be a major problem for mankind. The traces of heavy metals, especially Pb(II) ions present in water bodies remains undetected, untreated, and it remains in the food cycle causing serious health hazards for human and livestock. The consumption of Pb(II) ions may lead to serious medical complications including multiple organ failure which can be fatal. The conventional methods of heavy metal detection are costly, time‐consuming and require laboratory space. There is an immediate need to develop a cost‐effective and portable sensing system which can easily be used by the common man without any technical knowhow. A portable resistive device with miniaturized electronics is developed with microfluidic well and α‐MnO2/GQD nanocomposites as a sensing material for the sensitive detection of Pb(II). α‐MnO2/GQD nanocomposites which can be easily integrated with the miniaturized electronics for real‐time on‐field applications. The proposed sensor exhibited a tremendous potential to be integrated with conventional water purification appliances (household and commercial) to give an indication of safety index for the drinking water. The developed portable sensor required low sample volume (200 µL) and was assessed within the Pb(II) concentration range of 0.001 nM to 1 uM. The Limit of Detection (LoD) and sensitivity was calculated to be 0.81 nM and 1.05 kΩ/nM/mm2, and was validated with the commercial impedance analyser. The shelf‐life of the portable sensor was found to be ∼45 days.  相似文献   

9.
介绍了一种采用纳米SiO2、TiO2改性聚二甲基硅氧烷(PDMS)的方法,研究了两种纳米材料SiO2、TiO2添加的比例对热压效果的影响及优化条件,并分析了其改性后的热膨胀系数及杨氏模量的变化,以及其改性后热压效果的提高进行了初步分析,最后用改性的PDMS材料,快速成型来制造热压模具,热压制作聚甲基丙烯酸甲酯(PMMA)微流控芯片。与常用的金属模具(如镍模具)相比,此方法具有脱模容易,工艺周期短,难度低,重复性好,价格低等优点。  相似文献   

10.
Highly aligned carbon nanotubes (CNTs) were grown under high sheath electric field and gas pressure conditions by the radio frequency (RF) plasma-enhanced direct current (DC) plasma chemical vapor deposition (CVD) method due to a stabilized DC discharge. The uniform growth of highly aligned multi-walled CNTs was achieved over the entire surface area of a 50 × 50 mm2 iron foil. The growth of multi-walled CNTs on a 75 × 75 mm2 iron foil was also confirmed.  相似文献   

11.
Work on thermal degradation of polymers has previously been carried out at temperatures up to about 500° C. In the present work the range has been extended to 850° C. Polystyrene was pyrolyzed in a vacuum and also in helium at atmospheric pressure at 362° and at 850° C. Analysis of the volatile products indicates that higher temperatures and higher pressures cause a greater fragmentation of the volatile products. Samples of poly (vinylidene fluoride), polyacrylonitrile, and polytrivinylbenzene, were pyrolyzed in a vacuum at temperatures from 350° to 800° C. The more volatile products were analyzed qualitatively and quantitatively in a mass spectrometer. The less volatile products were tested for their average molecular weight by a microcryoscopic method.Rates of thermal degradation were also determined for the last three polymers. The activation energies in the temperature range 218° to 440° C were found to be 48, 31, and 73 kcal/mole, respectively, for poly(vinylidene fluoride), polyacrylonitrile, and polytrivinylbenzene.  相似文献   

12.
The molecular targeted drug ATRA demands a suitable carrier that delivers to the cancer site due to its poor bioavailability and drug resistance. ATRA, being a lipid with carboxylic acid, has been nano‐formulated as a cationic lipo‐ATRA with DOTAP:cholesterol:ATRA (5:4:1) and its pH‐responsive release, intracellular drug accumulation, and anticancer effect on human lung cancer (A549) cell line analysed. The analysis of the physicochemical characteristics of the developed lipo‐ATRA (0.8 µmol) revealed that the size of 231 ± 2.35 d.nm had a zeta potential of 6.4 ± 1.19 and an encapsulation efficiency of 93.7 ± 3.6%. The ATRA release from lipo‐ATRA in vitro was significantly (p ≤ 0.05) higher at acidic pH 6 compared to pH 7.5. The intracellular uptake of ATRA into lipo‐ATRA‐treated A549 cells was seven‐fold higher (0.007 ± 0.001 mg/ml) while only three‐fold uptake was observed in free ATRA treatment (0.003 ± 0.002 mg/ml). The lipo‐ATRA treatment caused a highly significant (p ≤ 0.001) decrease in percent cell viability at 48 h when compared with the free ATRA treatment. Overall, the results proved that the developed lipo‐ATRA has suitable physicochemical properties with enhanced ATRA release at acidic pH, while maintaining stability at physiologic pH and temperature. This resulted in an increased ATRA uptake by lung cancer cells with enhanced treatment efficiency. Hence, it is concluded that DOTAP lipo‐ATRA is a suitable carrier for ATRA delivery to solid cancer cells.  相似文献   

13.
An anisotropically conductive polymer composite (ACPC) based on carbon nanotubes (CNTs) and polycarbonate (PC)/polyethylene (PE) blend was fabricated via a slit die extrusion-hot stretch process. Under the influence of the shear flow and hot stretch, the PC phase is in situ deformed into aligned conductive fibrils in the PE matrix, whose surface region holds the majority of CNTs. When the stretch ratio rises to a certain level, the resistivity of the ACPC shows a strong anisotropy of three orders of magnitude difference between the perpendicular and parallel stretch directions. The fibrillar ACPC shows a weak positive temperature coefficient (PTC) effect, and two-process negative temperature coefficient (NTC) effect caused by the reorganization of PC fibrils below but near 230 °C, and the transformation from anisotropy to isotropy beyond 230 °C. The obtained ACPC allows it to have such potential applications as switch and sensor materials.  相似文献   

14.
Plastic nanofluidic devices are becoming increasingly important for biological and chemical applications. However, they suffer from high auto‐fluorescence when used for on‐chip optical detection. In this study, the auto‐fluorescence problem of plastic nanofluidic devices was remedied by newly developed fabrication methods that minimise their auto‐fluorescence: one by depositing a gold (Au) layer on them, the other by making them ultra‐thin. In the first method, the Au layer [minimum thickness is 40 nm on 150 μm SU‐8, 50 nm on 1 mm polyethylene terephthalate (PET), and 40 on 2 nm polymethyl methacrylate (PMMA)] blocks the auto‐fluorescence of the polymer; in the second method, auto‐fluorescence is minimised by making the chips ultra‐thin, selected operating thickness of SU‐8 is 20 μm, for PET it is 150 μm, and for PMMA it is 0.8 mm.Inspec keywords: nanofluidics, nanofabrication, plastics, optical sensors, nanosensors, biological techniques, gold, biosensorsOther keywords: autofluorescence fabrication methods, plastic nanoslits, plastic nanofluidic devices, biological applications, chemical applications, on‐chip optical detection, gold layer, SU‐8, polyethylene terephthalate, size 20 mum, size 150 mum, size 0.8 mm, Au  相似文献   

15.
Scanning electron microscopy (SEM) was used to observe the macroscopic, microscopic, and cross‐sectional structures of the claws of Cyrtotrachelus buqueti Guer (Coleoptera: Curculionidae), and a mathematical model of a claw was used to investigate the structure–function relationships. To improve the quality of the SEM images, a non‐local means (NLM) algorithm and an improved NLM algorithm were applied. After comparison and analysis of five classical edge‐detection algorithms, the boundaries of the structural features of the claw were extracted based on a B‐spline wavelet algorithm, and the results showed that the variable curvature of the beetle claw enhances its adhesion force and improves its strength. Adhesion models of the claw were established, and the mechanical properties of its biomaterials were measured using nanoindentation. Considering that the presence of water can affect the hardness and Young''s modulus, both ‘dry’ and ‘wet’ samples were examined. For the dry samples, the hardness and Young''s modulus were 0.197 ± 0.074 GPa and 1.105 ± 0.197 GPa, respectively, whereas the respective values for the wet samples were both lower at 0.071 ± 0.030 GPa and 0.693 ± 0.163 GPa. This study provides data that can inform the design of climbing robots.  相似文献   

16.
Poly‐methyl methacrylate (PMMA) polymer with remarkable properties and merits are being preferred in various biomedical applications due to its biocompatibility, non‐toxicity and cost effectiveness. In this investigation, oxytetracycline‐loaded PMMA nanoparticles were prepared using nano‐precipitation method for the treatment of anaplasmosis. The prepared nanoparticles were characterised using dynamic light scattering (DLS), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The mean average diameter of the nanoparticles ranged between 190–240 nm and zeta potential was found to be −19 mV. The drug loading capacity and entrapment efficiency of nanoparticles was found varied between 33.7–62.2% and 40.5–60.0%. The in vitro drug release profile exhibited a biphasic phenomenon indicating controlled drug release. The uptake of coumarin‐6(C‐6)‐loaded PMMA nanoparticles in Plasmodium falciparum (Pf 3D7) culture model was studied. The preferential uptake of C‐6‐loaded nanoparticles by the Plasmodium infected erythrocytes in comparison with the uninfected erythrocytes was observed under fluorescence microscopy. These findings suggest that oxytetracycline‐loaded PMMA nanoparticles were found to be an effective oral delivery vehicle and an alternative pharmaceutical formulation in anaplasmosis treatment, too.Inspec keywords: nanoparticles, nanomedicine, conducting polymers, microorganisms, cellular biophysics, toxicology, drug delivery systems, light scattering, atomic force microscopy, differential scanning calorimetry, Fourier transform infrared spectra, bloodOther keywords: in vitro evaluation, oxytetracycline‐loaded PMMA nanoparticles, anaplasmosis, polymethyl methacrylate polymer, biocompatibility, toxicity, oxytetracycline‐nanoparticles, nanoprecipitation method, dynamic light scattering, atomic force microscopy, AFM, differential scanning calorimetry, DSC, Fourier transform infrared spectroscopy, FTIR spectroscopy, zeta potential, drug loading capacity, entrapment efficiency, in vitro drug release profile, biphasic phenomenon, coumarin‐6(C‐6)‐loaded PMMA nanoparticles, plasmodium falciparum culture model, preferential uptake, plasmodium infected erythrocytes, fluorescence microscopy, oral delivery vehicle, anaplasmosis treatment, size 190 nm to 240 nm  相似文献   

17.
We describe a fast and cost-effective process for the growth of carbon nanofibers (CNFs) at a temperature compatible with complementary metal oxide semiconductor technology, using highly stable polymer–Pd nanohybrid colloidal solutions of palladium catalyst nanoparticles (NPs). Two polymer–Pd nanohybrids, namely poly(lauryl methacrylate)-block-poly((2-acetoacetoxy)ethyl methacrylate)/Pd (LauMAx-b-AEMAy/Pd) and polyvinylpyrrolidone/Pd were prepared in organic solvents and spin-coated onto silicon substrates. Subsequently, vertically aligned CNFs were grown on these NPs by plasma enhanced chemical vapor deposition at different temperatures. The electrical properties of the grown CNFs were evaluated using an electrochemical method, commonly used for the characterization of supercapacitors. The results show that the polymer–Pd nanohybrid solutions offer the optimum size range of palladium catalyst NPs enabling the growth of CNFs at temperatures as low as 350 °C. Furthermore, the CNFs grown at such a low temperature are vertically aligned similar to the CNFs grown at 550 °C. Finally the capacitive behavior of these CNFs was similar to that of the CNFs grown at high temperature assuring the same electrical properties thus enabling their usage in different applications such as on-chip capacitors, interconnects, thermal heat sink and energy storage solutions.  相似文献   

18.
Measurements of the heat capacity of methylphosphonyl difluoride (CH3POF2), methyl phosphonyl dichloride (CH3POCl2), and methylphosphonyl chlorofluoride (CH3POClF) were made from about 15 to 335 °K by means of an adiabatic calorimeter. These highly reactive and toxic substances were purified in a completely closed glass apparatus by combining slow crystallization and fractional melting procedures. The purities determined by the freezing-curve method are shown to be generally in agreement with those values obtained by the calorimetric method. From the results of the heat measurements, the triple-point temperature, heat of fusion, and their corresponding estimated uncertainties were found to be, respectively, 236.34±0.05 °K and 11,878±12 J/mole for CH3POF2, 306.14± 0.02 °K and 18,076±15 J/mole for CH3POCl2, and 250.70± 0.20 °K and 11,853±30 J/mole for CH3POClF. Triple-point temperatures obtained by the freezing-curve method are in agreement with the above values. A table of smoothed values of heat capacity, enthalpy, enthalpy function, entropy, Gibbs free energy, and Gibbs free energy function from 0 to 335 °K was obtained from the data. The entropy and its corresponding estimated uncertainty for CH3POF2, CH3POCl2, and CH3POClF in their respective condensed phase at 298.15 °K and saturation pressure was found to be 208.3± 0.3, 164.8± 0.3, and 216.4± 0.4 J/deg mole, respectively. The entropies in the gaseous state at 298.15 °K and 1 atm pressure were found to be 312.7±3, 339.7±3, and 335.0±3 J/deg mole, respectively.  相似文献   

19.
A novel three‐dimensional (3D) titanium (Ti)‐doping meso‐macroporous bioactive glasses (BGs)/poly(methyl methacrylate) (PMMA) composite was synthesised using PMMA and EO20 PO70 EO20 (P123) as the macroporous and mesoporous templates, respectively. Unlike the usual calcination method, the acid steam technique was used to improve the polycondensation of Ti‐BGs, and then PMMA was partially extracted via chloroform to induce the macroporous structure. Simultaneously, the residual PMMA which remained in the wall enhanced the compressive strength to 2.4 MPa (0.3 MPa for pure BGs). It is a simple and green method to prepare the macro‐mesoporous Ti‐BGs/PMMA. The materials showed the 3D interconnected hierarchical structure (250 and 3.4 nm), making the fast inducing‐hydroxyapatite growth and the controlled drug release. Besides mentioned above, the good antimicrobial property and biocompatible of the scaffold also ensure it is further of clinical use. Herein, the fabricated materials are expected to have potential application on bone tissue regeneration.Inspec keywords: titanium, bone, tissue engineering, glass, materials preparation, biomedical materials, polymers, porous materials, drug delivery systems, nanomedicineOther keywords: poly(methyl methacrylate), PMMA preparation, 3D titanium‐bioactive glass scaffold, bone tissue engineering, titanium‐doping mesomacroporous bioactive glass, bioactive glass‐PMMA composite, macroporous template, mesoporous template, calcination method, acid steam technique, titanium‐bioactive glass polycondensation, macroporous structure, green method, macromesoporous titanium‐bioactive glass‐PMMA, 3D interconnected hierarchical structure, fast inducing‐hydroxyapatite growth, controlled drug release, bone tissue regeneration, Ti  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号