首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
《煤炭学报》2021,46(4)
基于煤炭开发新型碳纳米材料,用于增强过渡金属氧化物电化学性能,构筑高比容量、高稳定性锂离子电池负极材料具有巨大的应用潜力。以宁夏太西无烟煤为碳质前体,采用高温石墨化-化学氧化策略制备得到煤基氧化石墨烯(CGO),并以多孔泡沫镍为3D支撑骨架和集流体,依次以含铁的DMF/H_2O混合溶液和CGO水溶液为电解液,通过二次原位电沉积技术构建了煤基石墨烯/三氧化二铁(CG/Fe_2O_3)自支撑复合材料。利用场发射扫描电子显微镜(FESEM)、X射线衍射仪(XRD)、拉曼光谱(Raman Spectra)等手段对产物的形貌结构和物相组成进行了表征。结果表明,DMF与H_2O的体积比为1∶1时,所制备的Fe_2O_3自支撑材料呈鹿角状结构;CGO的质量浓度为0.1 mg/mL时,所制备的CG/Fe_2O_3-1复合材料呈现分级多孔自支撑结构。将CG/Fe_2O_3-1自支撑复合材料直接作为锂离子电池负极,在1.0 A/g大电流密度下,具有1 156 mA·h/g的高可逆容量,容量保持率达88.9%;当电流密度提升至5.0 A/g时,容量仍可保持在1 074 mA·h/g左右,展现出优异的倍率性能。电荷储存机理分析表明,CG/Fe_2O_3-1复合电极的电容主要源于电池充放电过程中CG产生的双电层电容以及Fe_2O_3氧化还原反应产生的赝电容贡献。这种出色的储锂性能归因于分级自支撑负极的宏观设计,其赋予CG/Fe_2O_3-1更加稳定的空间结构和通畅的Li~+传输通道,能够有效改善Fe_2O_3充放电过程中的体积变化,加速锂化/脱锂动力学。  相似文献   

2.
以四水合钼酸铵(AHM)、乙二醇(EG)为原料,采用水热法合成MoO2材料,用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学测试研究材料的结构和电化学性能。结果表明,水热法合成的MoO2粒径为20~30 nm,材料表现出良好的电化学性能。首次放电比容量为664.3 m A·h/g,充放电效率较高,首次充放电的库伦效率高达94%,在20个充放电循环过后,仍有较高的容量保持率,MoO2作为锂离子电池负极材料展现出良好的容量存储和循环性能。  相似文献   

3.
结合水热法和冷冻干燥法制备了高容量锂离子电池负极材料Sb/MoS2/C,利用X射线衍射、扫描电镜、透射电镜和X射线光电子能谱等手段对样品的结构和形貌进行了表征。结果表明,合成的Sb/MoS2/C复合材料的形貌结构为纳米片状。通过恒流充放电对样品进行电化学性能测试,结果表明,该材料具有杰出的电化学性能,在0.2 A/g电流密度下,循环200次后容量保持率为99%。  相似文献   

4.
以SnCl_4、ZnCl_2、煤矸石和NaOH为原料,采用沸腾回流法制备了SnO_2和ZnO摩尔比为1:1的SnO_2-ZnO/煤矸石复合物。用场发射扫描电子显微镜(FESEM)、X射线衍射仪(XRD)及紫外-可见漫反射光谱(UV-Vis DRS)等手段对产物进行表征。在紫外光照下,考察了所制SnO_2-ZnO/煤矸石复合物催化降解敌敌畏、乐果、敌百虫、乙酰甲胺磷、马拉硫磷五种常见有机磷农药的效果。结果表明,将SnO_2-ZnO复合物负载在煤矸石表面,不仅可有效提高SnO_2-ZnO复合物的光催化性能,还能实现催化剂的多次回收再利用。  相似文献   

5.
采用高温固相法成功合成了新型钛基负极材料Na_2Li_2Ti_6O_(14),并研究了其结构及电化学性能。利用高分辨透明电镜(HRTEM)、X射线衍射(XRD)及其Rietveld精修、扫描电子显微镜(SEM)及能谱分析(EDS)表征分析了材料的物相和显微结构。结果表明,合成的Na_2Li_2Ti_6O_(14)负极材料为纯相,具有Fmmm空间群结构;Na_2Li_2Ti_6O_(14)颗粒约为500~800 nm,Na、Ti和O三种元素分布均匀。循环伏安(CV)、充放电及电化学阻抗谱(EIS)测试表明,材料具有较好的锂离子脱嵌可逆性,较好的倍率性能和循环稳定性。钛电流密度为500 m A/g充放电时,Na_2Li_2Ti_6O_(14)材料的首次脱锂(充电)容量为180 m A·h/g,100次循环后可逆容量为136 m A·h/g;100次循环后,Na_2Li_2Ti_6O_(14)材料的电荷转移电阻增加,锂离子扩散系数略有下降,表明Na_2Li_2Ti_6O_(14)材料在循环后SEI膜的生成,降低了材料的电化学活性。  相似文献   

6.
以聚碳酸酯膜作为模板结合溶胶-凝胶技术制备snO2纳米管状阵列,用x射线衍射及扫描电镜对材料的结构及形貌进行表征,通过0.1mA·cm-2.恒流充/放电试验,研究材料的嵌脱锂特性等电化学性能.结果表明,电池最大可逆放电容量为663mAh/g,最大可逆充电容量为656mAh/g,平均每次放电容量衰减率为O.77%,平均每次充电容量衰减率为0.88%,充/放电效率维持在95%以上的稳定水平.SnO2纳米管状阵列锂离子电池负极材料克服了一般的锡氧化物循环性能差的缺点.因此有希望成为一种较好的负极材料.  相似文献   

7.
硅基负极材料因其高的比容量成为下一代锂离子电池负极研究的重点。通过概述硅基负极材料的研究进展,针对硅基材料在充放电过程中体积变化大、电池容量衰减快等缺点,从硅源的改性、硅碳复合材料的设计、氧化亚硅材料的改性等方面对其电化学性能进行提升;针对硅基材料的产业化现状及其制约因素,介绍了陕煤研究院在核壳结构硅碳负极材料,包埋结构硅碳负极材料,凹陷结构硅碳负极材料方面的研究进展及其产业化成果,并对硅基材料的研究方向和产业化进展进行了展望。  相似文献   

8.
为了解决氧化亚硅负极材料导电率低及循环性能差的问题,以聚丙烯酰胺(PAM)为液相碳源进行一次碳包覆,再通过化学气相沉积以甲烷混乙炔为气相碳源进行二次包覆,制备了具有含氮碳层的双层包覆氧化亚硅负极材料(SiOx@DC-N)。与纯气相包覆(SiOx@GC)以及纯液相包覆(SiOx@LC)的氧化亚硅负极材料相比,SiOx@DC-N展现出优异的倍率性能与循环性能,在4C(1C=1 500 mA/g)的电流密度下比容量达850.1 mAh/g,以5∶95混合石墨后制成18650圆柱电池,其在电流密度1C充放电700圈循环后容量保持率仍有92.70%。  相似文献   

9.
李江鹏  张晓萍  伍凌 《矿冶工程》2021,41(6):198-201
采用氢氟酸刻蚀法制备了Ti3C2 MXene,研究了刻蚀温度和刻蚀时间对Ti3C2结构、形貌及电化学性能的影响。研究结果表明,室温下制备的Ti3C2呈手风琴状,随着刻蚀温度升高,Ti3C2层间距逐渐增大,且多层Ti3C2逐渐转变成单层结构。室温下刻蚀速度较为缓慢; 随着刻蚀时间延长,Al原子层逐渐被溶解,刻蚀24 h以上可得到手风琴状多层Ti3C2。电化学研究结果表明,室温下刻蚀24 h制备的多层Ti3C2 MXene电化学性能较好,该样品在0.1 A/g电流密度下的首次放电比容量为450.6 mAh/g,循环700次后比容量仍有124.1 mAh/g。  相似文献   

10.
针对草酸亚铁负极材料循环稳定性差的问题,采用简单的溶剂热法,通过控制表面活性剂种类,分别用可控的合成得到了两种不同形貌结构的草酸亚铁,并进一步考察了材料的储锂能力。结果表明,表面活性剂可以改变材料颗粒晶面亲水和疏水的相互作用,进而影响材料颗粒形貌和结构稳定性。基于颗粒完整的长杆状结构、N-甲基-2-吡咯烷酮条件下合成得到的草酸亚铁材料表现出更为优异的倍率和循环性能,在1、3、5C电流密度下循环50次后,仍有585.18、551.39和539.07 mA·h/g的放电比容量。  相似文献   

11.
田华玲  粟智 《矿冶工程》2016,(2):104-107
以Li_2CO_3、Fe_2O_3和TiO_2为原料,葡萄糖为碳源,采用高温固相法合成了锂离子电池LiFeTiO_4/C复合材料。采用X射线衍射(XRD)、傅里叶红外光谱(FTIR)、透射电子显微镜(TEM)等手段对材料的晶体结构和形貌进行了表征,通过恒流充放电、循环伏安(CV)和交流阻抗对材料的电化学性能进行了测试。结果表明,碳包覆后的LiFeTiO_4负极材料循环性能优于未经碳包覆的材料。在室温下,充放电倍率为0.5C时,LiFeTiO_4/C负极材料的首次放电比容量为327.8 m Ah/g,循环50周后仍保持在308.3 m Ah/g。  相似文献   

12.
采用溶胶凝胶法成功制备了锂离子电池Li1.2Mn0.56Ni0.16Co0.08O2正极材料,并采用扫描电子显微镜(SEM)、循环伏安(CV)及充放电等测试研究了该材料的形貌和电化学性能。SEM测试结果表明,合成的Li1.2Mn0.56Ni0.16Co0.08O2粒径约为2μm,呈长片层状结构。CV测试表明,经过首次循环后,Li2MnO3组分得到活化,并转变为具有电化学活性的LiMnO2,并造成了锂离子的不可逆损失。充放电测试表明,在0.2C倍率循环时,Li1.2Mn0.56Ni0.16Co0.08O2材料的首次放电比容量为199.7 mAh.g-1。倍率性能测试表明,在经过36次充放电循环后,仍有很高的容量保持率。  相似文献   

13.
针对Co3O4导电性差、离子迁移率低和体积膨胀过大的缺点,利用GNRs比表面积大、纵宽比高和含氧基团多的特点,通过与GNRs复合的方式制备纳米级复合材料对Co3O4进行了改性,采用了一步沉淀法制备纳米级复合材料Co3O4@GNRs提高电化学性能.将钴源用氨水进行沉淀一步制备复合材料Co3O4@GNRs.采用SEM、XR...  相似文献   

14.
采用乙二醇辅助的水热法合成了锂离子电池LiMn0.6Fe0.4PO4/C纳米片正极材料,并采用X射线衍射(XRD)及其Rietveld精修和扫描电子显微镜(SEM)研究了材料的结构与形貌;采用循环伏安(CV)和充放电测试研究了材料的电化学性能。XRD及其Rietveld精修表明,LiMn0.6Fe0.4PO4/C纳米片具有与LiMnPO4类似的结构,无杂质峰。SEM表明,LiMn0.6Fe0.4PO4/C的形貌为片层状结构。CV表明,LiMn0.6Fe0.4PO4/C存在Mn2 /Mn3 和Fe2 /Fe3 两步转化过程。充放电测试结果表明,LiMn0.6Fe0.4PO4/C纳米片具有较好的倍率容量和循环稳定性。5C倍率放电时,100次循环的容量仍高达115.8 mAh/g左右,容量保有率为95.8%。  相似文献   

15.
随着现代工业的发展,对于绝缘材料的性能要求越来越高,作为电气绝缘主力的云母纸材料的应用范围越来越广.然而,由于云母纸本身强度较低,使其应用受到一定的限制.芳香族聚酰胺制备的纸基材料同样在绝缘方面有着优异的表现,并且因为其优良的拉伸强度和柔软性能,日益受到重视.芳香族聚酰胺纤维与云母复合造纸结合了芳香族聚酰胺材料的机械强度,又具备云母的耐电晕性能和高绝缘性能,解决了云母纸需要使用黏结剂和补强材料提高强度的问题,提高了云母纸的性能.  相似文献   

16.
三维硅已被证明为极具前景的锂离子电池负极材料,然而现有的三维硅负极在循环性能和初始库伦效率等方面存在挑战。采用盐酸刻蚀、镁热还原和表面组装的策略,从天然蒙脱矿土直接制备出微米级的三维多孔硅/二氧化钛(3D pSi@TiO2)复合材料。结果表明:复合材料具有的三维多孔结构能够提供足够的空隙,缓解了脱-嵌锂过程中发生的体积膨胀,缩短了电子传输和锂离子扩散的路径,有利于锂离子的快速嵌入和脱出并减少极化;与二氧化钛的有效复合,进一步提高了复合材料的导电率及结构的稳定性;3D pSi@TiO2负极在0.5A·g-1电流密度下循环200次后,可逆容量高达1 261.19 mAh·g-1及90.79%的优异容量保持率,同时初始库伦效率可达到80.6%。  相似文献   

17.
采用金属铝片和金属锂片组装纽扣电池。通过电化学性能测试和充放电前后Al 片的X射线衍射分析及SEM显微观察,表明在合适充放电条件下, Al与Li形成金属间化合物, 具有较高的电化学容量和一定的循环性能。  相似文献   

18.
氧化锌作为锂离子电池负极材料具有理论比容量高(978 mAh/g),来源广,环境友好和价格便宜等优势,是新一代高效环保的锂离子电池负极材料之一。然而氧化锌电极材料固有的电导率较低,不利于电池大电流充放电。并且在循环充放电过程中,易产生枝晶及周期性应力,导致材料体积膨胀或结构损坏,致使电池的循环性能衰减过快,容量保持率低。本文综述了改善氧化锌电化学性能的两种常用的策略:制备不同维度具有纳米结构的氧化锌电极材料;与碳材料、金属单质和金属氧化物等复合制备氧化锌复合电极,并对该类负极材料进一步研究、应用前景予以展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号