首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
再生粗骨料混凝土梁抗弯性能试验研究   总被引:8,自引:0,他引:8  
肖建庄  兰阳 《特种结构》2006,23(1):9-12
通过对3根相同配筋率、相同混凝土抗压强度、不同再生粗骨料取代率的再生混凝土简支梁的抗弯试验,探讨了再生混凝土受弯构件正截面受力变形性能和破坏特征。试验结果表明:再生混凝土梁正截面在受力过程中,仍具有弹性、开裂、屈服和极限4个明显特征;正截面平均应变服从平截面假定;相同条件下,再生混凝土梁的开裂弯矩和极限抗弯承载能力接近于普通混凝土受弯构件,抗弯刚度小于普通混凝土受弯构件。最后,本文根据现行《混凝土结构设计规范》(GB50010-2002)提出的普通混凝土梁的计算公式,验算了再生混凝土梁的开裂弯矩、极限弯矩、挠度和最大裂缝宽度。初步验算结果表明,除极限弯矩计算公式外,普通混凝土梁的开裂弯矩、挠度和最大裂缝宽度计算公式均不再适用于再生混凝土梁。  相似文献   

2.
吴涛  杨雪  刘喜  魏慧 《土木工程学报》2022,55(4):1-11+22
完成对称集中荷载作用下的8根轻骨料混凝土深受弯构件及2根普通混凝土深受弯构件受剪性能试验,分析了腹筋配筋率及截面高度对破坏过程及形态、荷载 跨中挠度曲线、特征荷载、斜裂缝发展趋势、纵筋及腹筋应变等的影响机制与规律,重点明确了腹筋对深受弯构件抗剪承载力及尺寸效应影响的作用机理。为合理量化腹筋在传力机制中的贡献,建立以腹筋作为竖向拉杆的改进拉-压杆模型(STM),结合对典型压杆有效系数模型的分析和评价,验证了改进STM的有效性。试验结果表明:试件主要发生剪压破坏,其破坏形态与截面高度无关,腹筋可有效约束混凝土剥落;随腹筋配筋率增大,名义开裂/极限强度呈增大趋势,而最大斜裂缝宽度随之降低;腹筋可在抵抗斜截面内部分拉应力的同时对压杆形成有效侧向约束,削弱尺寸效应影响。计算结果表明:与简化STM相比,改进STM能够合理反映腹筋配筋率对受剪承载力的影响,基于ACI 318.19压杆有效系数的改进STM的预测值与试验值吻合良好。  相似文献   

3.
高强混凝土受弯构件延性的截面宽度效应   总被引:1,自引:1,他引:0  
研究截面宽度对高强混凝土受弯构件性能的影响。混凝土立方体强度达 118MPa的受弯构件试验表明 :开裂荷载、屈服荷载和最大荷载与构件截面宽度成正比 ,构件的截面宽度越大 ,其极限转角、挠度延性及压区混凝土极限压应变也越大。  相似文献   

4.
钢筋超高性能纤维混凝土梁抗弯性能研究   总被引:3,自引:0,他引:3  
孙小凯  刁波  叶英华 《工业建筑》2012,42(11):16-21
通过8根采用自密实和常温标准养护制成的试验梁的静力加载试验,研究不同配筋率受弯构件的抗弯性能。试验结果表明:与相同基体强度和配筋率的钢筋混凝土梁相比,加入钢纤维后梁的极限承载力提高约13%,位移延性系数提高158%;加入钢纤维后梁的初裂荷载、裂缝宽度为0.1 mm时的荷载值占极限荷载的比例较对比梁大幅度提高,但裂缝宽度为0.2 mm时的荷载值与对比梁差别不大;随着钢筋配筋率的提高,试验梁极限承载力会相应的提高,相对于配筋率为0.86%的梁,配筋率分别为1.52%、2.38%时,梁的抗弯承载力分别提高72%、113%;参照CECS 38∶2004《纤维混凝土结构设计规程》,提出了钢筋超高性能纤维混凝土受弯构件正截面抗弯承载力计算方法,计算结果与试验结果吻合较好。  相似文献   

5.
《工业建筑》2017,(11):28-34
为研究无腹筋玄武岩纤维(BFRP)筋再生混凝土深受弯构件的破坏模式、开裂荷载、极限荷载、裂缝扩展趋势及变形性能,对9根BFRP筋再生混凝土深受弯构件进行四分点集中力加载试验。考虑影响深受弯构件抗剪性能的主要因素:剪跨比、再生混凝土抗压强度、BFRP筋配筋率、截面有效高度。在此基础上利用ANSYS建立非线性有限元模型进行对比分析。研究结果表明:有限元分析结果与试验结果基本一致;试验梁的抗剪承载力随剪跨比的增大而减小,随纵向BFRP筋配筋率、截面有效高度和再生混凝土抗压强度的提高而呈上升趋势;模拟较好地反映了裂缝发展趋势及BFRP筋的应变;但试验梁的荷载-变形曲线与模拟结果有一定偏差,仍需进一步研究。  相似文献   

6.
以钢纤维体积掺量和截面含钢率为主要变化参数,对23个方钢管钢纤维再生混凝土短柱和2个未掺加钢纤维的方钢管再生混凝土短柱试件进行了轴心受压试验。通过试验,观察了试件受力全过程和破坏形态,获取了荷载-位移曲线和荷载-应变曲线,并分析了钢纤维体积掺量、截面含钢率对其承载和变形性能的影响。结果表明:方钢管钢纤维再生混凝土短柱轴向受压破坏形态与方钢管普通混凝土构件相似,掺入钢纤维对其破坏形态几乎无影响;钢纤维的掺入对试件承载力的增益作用并不明显,当钢纤维体积掺量不超过1.5%时,试件轴压承载力较未掺加钢纤维构件有小幅提高,但当钢纤维体积掺量超过2%后,因钢纤维数量增多易出现分布不均匀而结团、混凝土界面薄弱区增多,试件承载力反而降低,且降幅随钢纤维体积掺量增大而增大;掺入钢纤维显著改善了试件延性,试件位移延性系数随钢纤维体积掺量的提高而增大;截面含钢率对试件承载性能影响明显,试件承载力和位移延性系数均随截面含钢率的增大而增大;为使试件既获得较高的承载力又具有良好的延性,建议钢纤维体积掺量取为1.0%~1.5%;利用基于统一强度理论提出的方钢管钢纤维再生混凝土短柱的轴压承载力计算公式所得结果与试验实测数据符合较好。  相似文献   

7.
通过尾矿砂替代率分别为0%、40%、50%、60%、70%的5根混凝土梁和5块板的受弯性能试验,对比分析了尾矿砂替代率对混凝土受弯构件的力学性能、破坏特征和变形的影响规律。分析表明:尾矿砂混凝土构件受弯过程中符合平截面假定,受力过程中具有弹性、开裂、屈服和极限等阶段;相对于普通混凝土构件同级荷载作用下,尾矿砂替代率越高,跨中挠度及裂缝宽度越大;尾矿砂混凝土构件开裂荷载、极限荷载、最大裂缝宽度及跨中挠度值等力学特征可采用《混凝土结构设计规范》(GB50010—2010)中混凝土构件相关公式计算;建议尾矿砂混凝土构件尾矿砂参入量为40%。  相似文献   

8.
完成了9根配GFRP筋和1根配钢筋的高强轻骨料混凝土梁受弯性能试验,观察其破坏过程与破坏形态,分析了纤维掺量、纵筋类型、配筋率及纵筋直径等参数对试件承载能力、弯矩-跨中挠度曲线、裂缝宽度等受弯性能的影响,采用美国ACI 440.1R-15、中国GB 50608—2010和加拿大CSA S806-12、ISIS-M03-07等规范中的建议模型,通过开裂弯矩、承载力、挠度和裂缝宽度等参数评估了各国规范对该类构件的适用性。结果表明:随配筋率的增大,试件破坏模式依次表现为受拉破坏、平衡破坏和受压破坏,受压区破坏面贯穿骨料内部,较为光滑;掺入钢纤维能够有效抑制混凝土裂缝开展,延缓构件刚度退化,使开裂弯矩平均提高51.71%,承载力平均提高22.10%;增大GFRP筋配筋率能够提高构件刚度,但GFRP筋直径变化对试件变形及裂缝宽度无显著影响;GFRP筋梁开裂后刚度退化较配钢筋的对比试件迅速。各国规范计算结果表明:受拉破坏试件承载力计算结果较离散,且均偏于不安全;对于平衡破坏和受压破坏的试件预测结果均偏于保守,有足够安全储备。考虑轻骨料和钢纤维对构件刚度退化规律的影响,修正有效惯性矩并给出建议挠度计算模型,计算结果与试验结果吻合较好。  相似文献   

9.
通过对7根玄武岩纤维复材(BFRP)筋钢纤维再生混凝土梁的受弯试验,研究不同钢纤维体积掺量和BFRP筋配筋率对其受弯性能的影响。结果表明:钢纤维体积掺量和配筋率均对BFRP筋钢纤维再生混凝土梁的抗弯承载力有一定程度的影响。相较于未掺钢纤维的BFRP筋再生混凝土梁,钢纤维体积掺量为1.0%的试验梁的初裂荷载和极限荷载分别提高了32.8%和18.2%。随着BFRP筋配筋率的增加,BFRP筋再生混凝土梁抗弯承载力显著增加。还在试验基础上结合相关现行技术标准,对BFRP筋钢纤维再生混凝土梁的受弯承载力、挠度、裂缝宽度进行分析计算,并对计算值与试验结果进行对比分析。  相似文献   

10.
《混凝土》2018,(10)
牛腿构件受力纵筋采用焊接锚固形式,通过6个高强混凝土牛腿构件的受剪加载试验,研究高强混凝土牛腿的受力机理及破坏模式,分析剪跨比和钢纤维掺量对牛腿受剪性能的影响。结果表明:随着剪跨比的增大,牛腿开裂荷载和极限承载力显著降低;随着钢纤维掺量的增加,牛腿开裂荷载显著增加,裂缝宽度、极限承载力得到改善。  相似文献   

11.
通过对全珊瑚海水钢筋混凝土梁(CARCB)和普通钢筋混凝土梁(OARCB)进行受弯性能试验,研究了混凝土种类和配筋率对CARCB的变形性能、承载能力的影响。结果表明:随着配筋率的提高,CARCB的开裂弯矩和极限弯矩均逐渐增大,裂缝宽度扩展逐渐减慢,能有效抑制裂缝的发展。同时,可以通过提高配筋率,增大开裂弯矩与极限弯矩的比值,从而延后CARCB的开裂时间。CARCB的裂缝宽度均随着荷载的增长而增大,在加载初期,裂缝宽度增长缓慢,接近极限荷载时,裂缝宽度迅速增大,最终导致梁破坏。此外,综合考虑钢筋锈蚀引起钢筋截面损失和钢筋屈服强度降低的影响,提出了CARCB的极限弯矩、纵向受拉钢筋应力、平均裂缝间距和平均裂缝宽度的计算模型。  相似文献   

12.
纤维增强聚合物(FRP)筋混凝土梁受弯挠度过大、裂缝过宽等缺陷严重影响其正常使用性能,为此,将具有优良抗裂与阻裂性能的钢纤维混凝土用于FRP筋混凝土梁,可以有效限制其挠度与裂缝的发展。通过12根玄武岩纤维增强聚合物(BFRP)筋/钢筋钢纤维高强混凝土梁的受弯性能试验,研究了钢纤维体积率、受拉区钢纤维高强混凝土层厚度、BFRP筋配筋率对BFRP筋钢纤维高强混凝土梁裂缝分布与宽度的影响。结果表明,钢纤维的加入能够有效抑制BFRP筋高强混凝土梁的裂缝开展,减小裂缝间距、宽度和裂缝宽度差异性,当荷载为100 kN时,钢纤维体积率为0.5%~2.0%的钢纤维高强混凝土梁的裂缝宽度减小了25.22%~54.78%,裂缝宽度标准差减小了10.00%~68.18%;当受拉区钢纤维混凝土层厚度达到梁截面高度的57%时,其阻裂与限裂效果与全截面掺加钢纤维的效果接近,表明在受拉区中掺加钢纤维以限制BFRP筋混凝土梁裂缝的发展是经济可行的。基于试验和相关文献研究结果,提出了考虑钢纤维影响的BFRP筋钢纤维高强混凝土梁最大裂缝宽度的建议计算方法,该建议方法的计算值与试验值吻合良好。  相似文献   

13.
钢筋超高性能混合钢纤维混凝土梁受剪性能研究   总被引:1,自引:0,他引:1  
刁波  封云  叶英华  杨松霖 《工业建筑》2012,42(11):6-10,15
自密实超高性能钢纤维混凝土具有高强、高韧、高流动性和高耐久性的优势,但其抗拉强度仍远低于抗压强度。通过静力加载试验,研究超高性能纤维混凝土梁的抗弯性能,以及配置550 MPa受拉纵筋时超高性能钢纤维混凝土无腹筋梁,在剪跨比分别为2.5、3时的受剪性能。试验梁的钢纤维体积率为2%,其中超细钢纤维和端弯钢纤维以3∶1比例混合,基体混凝土强度大于C100的强度,梁试件采取自密实成型和常温标准养护方法。试验结果表明:与无钢纤维混凝土梁相比,混合钢纤维超高性能混凝土梁的极限荷载和延性得到明显改善。无腹筋梁的初裂荷载提高了25%~180%、裂缝宽度0.2 mm时的荷载提高了73%~183%、极限荷载提高了68%~317%、延性提高了3.2倍~4.4倍。  相似文献   

14.
混杂纤维自密实混凝土梁受弯性能的试验研究   总被引:1,自引:0,他引:1  
在纤维自密实混凝土工作性试验的基础上,对7组无筋混杂纤维自密实混凝土梁和5组混杂纤维增强低配筋率的钢筋自密实混凝土梁受弯性能进行试验研究,并分析纤维类型和纤维长径比对梁的开裂荷载、屈服荷载、极限荷载以及弯曲韧性的影响。结果表明:梁的弯曲韧性随着纤维长径比的增加而增加,混杂纤维混凝土梁的弯曲韧性优于钢纤维,两种纤维协同作用时具有很好的正混杂效应;与最小配筋率的钢筋混凝土梁相比,纤维的掺入明显地改善了梁的屈服荷载和极限荷载,掺有(40+4)kg/m3混杂纤维并按最小配筋率配筋的梁的极限荷载与仅按1.5倍最小配筋率配筋的梁相当。  相似文献   

15.
高丹盈  雷杰  樊华 《建筑结构学报》2012,33(12):106-111
为研究钢纤维高强混凝土四桩承台的受力性能,基于17个钢纤维高强混凝土承台试件的受弯试验,分析了不同钢纤维体积率、承台有效厚度、钢筋配筋率、混凝土强度承台的裂缝开展和破坏形态、荷载 挠度曲线、钢筋和混凝土应变特征以及承台破坏机理。结果表明:底部配筋率为0.16%~0.52%的钢纤维高强混凝土四桩承台呈现受弯破坏形态,弯曲拉应力由钢筋和钢纤维混凝土共同承担;随着承台有效厚度和钢纤维体积率的增加,承台受弯承载力显著提高。依据研究结果提出了钢纤维高强混凝土四桩承台受弯破坏计算模型,建立了钢纤维高强混凝土四桩承台受弯承载力计算式,为完善CECS 38:2004《纤维混凝土结构技术规程》提供参考。  相似文献   

16.
为研究600MPa级超高强钢筋混凝土梁受弯性能,进行18根配置600MPa级高强钢筋和1根配置HRB400钢筋的混凝土梁受弯静载试验,分析600MPa级超高强钢筋对混凝土梁裂缝分布、承载力、平均裂缝间距、最大裂缝宽度等影响。研究结果表明:配置该类型钢筋的受弯构件开裂弯矩和极限弯矩仍然可以按照现行规范公式进行计算;短期荷载作用下平均裂缝间距、最大裂缝宽度等参数计算值与现行混凝土结构设计规范公式计算值存在一定差异,平均裂缝间距计算值偏大,最大裂缝宽度计算值与试验值相比偏小。最后根据试验数据对配置该类型钢筋的受弯构件裂缝宽度计算公式进行适当修正,第一种方法是在现行规范计算公式基础上引进裂缝宽度综合调整系数,第二种方法是对现行规范裂缝宽度计算公式中的平均裂缝间距采用修正公式代替,短期裂缝宽度扩大系数采用修正值。修正结果表明第一种修正方法得到的计算值与试验值吻合度高,同时考虑到规范的连续性,建议采用第一种方法进行裂缝宽度修正。  相似文献   

17.
To study the flexural behavior of prestressed concrete beams with high-strength steel reinforcement and high-strength concrete and improve the crack width calculation method for flexural components with such reinforcement and concrete, 12 specimens were tested under static loading. The failure modes, flexural strength, ductility, and crack width of the specimens were analyzed. The results show that the failure mode of the test beams was similar to that of the beams with normal reinforced concrete. A brittle failure did not occur in the specimens. To further understand the working mechanism, the results of other experimental studies were collected and discussed. The results show that the normalized reinforcement ratio has a greater effect on the ductility than the concrete strength. The cracking- and peak-moment formulas in the code for the design of concrete (GB 50010-2010) applied to the beams were both found to be acceptable. However, the calculation results of the maximum crack width following GB 50010-2010 and EN 1992-1-1:2004 were considerably conservative. In the context of GB 50010-2010, a revised formula for the crack width is proposed with modifications to two major factors: the average crack spacing and an amplification coefficient of the maximum crack width to the average spacing. The mean value of the ratio of the maximum crack width among the 12 test results and the relative calculation results from the revised formula is 1.017, which is better than the calculation result from GB 50010-2010. Therefore, the new formula calculates the crack width more accurately in high-strength concrete and high-strength steel reinforcement members. Finally, finite element models were established using ADINA software and validated based on the test results. This study provides an important reference for the development of high-strength concrete and high-strength steel reinforcement structures.  相似文献   

18.
The mix ratio of steel fiber reinforced concrete (SFRC) was optimized using the principles that workability must meet the pumping demand and anti-cracking performance should be optimal. The effect of SFRC on the initial cracking load, the ultimate load and the crack width of the reinforced concrete (RC) member were analyzed in this paper. It was found that the admixture had good preservation of moisture and adhesion and the fibers distributed homogeneously in one hour out of the machine. According to the pumping results, the SFRC could be pumped vertically up to 306 m. Based on the standard computation formula of cracks, the maximum crack width of an RC member with 0.8% steel fiber (by volume) is about 32% lower than that of standard RC member. Through an experimental research on full-scale model tests for the steel and concrete composite anchorage zone on a pylon, the SFRC not only remarkably increases the crack resistance and the ultimate load, but the initial load also improves 33% approximately. It is also indicated that plastic shrinkage cracking of SFRC in which volume fraction of steel fibers is 0.8% can be restrained obviously and the unrestrained drying shrinkage can be diminished by about 50% at early age. The results confirmed that the SFRC can lessen the shrinkage crack of concrete and enhance markedly the direct tensile strength. Therefore, the SFRC can solve the key question of crack resistance for the anchorage zone of a bridge tower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号