首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
为拓展药食同源植物资源龙牙百合的应用,研究高品质龙牙百合粉的制备方法,本实验拟考察不同的护色工艺和干燥工艺组合对龙牙百合粉产品质量的影响。以新鲜龙牙百合为原料,分别考察护色工艺(蒸汽烫漂和热水烫漂)和干燥工艺(常压热风干燥和真空微波干燥)的不同组合对龙牙百合粉感官品质、化学质量指标及抗氧化能力等功能品质的影响。结果表明,与传统工艺(热水烫漂结合常压热风干燥)比较,蒸汽烫漂结合真空微波干燥的工艺组合使龙牙百合粉产品总多糖、总黄酮和总多酚含量分别提高了24%、19%和37%。采用真空微波干燥制备的百合粉其体外抗氧化能力均强于热风干燥产品,其中蒸汽烫漂结合真空微波干燥工艺组合制备的百合粉体外抗氧化能力最强,其总还原能力、DPPH·和·OH清除能力的IC50分别为17.24、12.00和10.21 mg/mL,显著低于传统工艺产品的IC50值42.38、18.77和16.56 mg/mL。蒸汽烫漂结合真空微波干燥工艺组合制备的龙牙百合粉产品综合品质明显优于其他考察的工艺组合,可作为高品质百合粉的工艺选项之一。  相似文献   

2.
为提高规模化生产的百合品质,缩短干燥周期,以兰州百合为试样,运用JK-LB1700型薄层干燥试验台制干。系统研究了不同热风温度(60,70,80,90℃),热风速度(0.5,1.0,1.5,2.0m/s)和湿度(20%,30%,40%)对百合热风薄层干燥速率、色泽ΔE*值、VC含量、复水比的影响及各指标的变化规律;通过Weibull分布函数模拟了百合干燥过程及水分扩散规律。结果表明:随热风温度、热风速度增大百合热风薄层干燥时间显著缩短(P<0.01),不同相对湿度下无差异,但在干燥前期湿度大小与物料干燥速率呈正相关,后期呈负相关。采用Weibull分布函数能够准确(R2>0.99)描述百合热风薄层干燥过程,基于Weibull分布函数可准确获得百合薄层干燥水分有效扩散系数(1.213×10-6~3.992×10-6 m2/s),Deff值不仅受干燥参数影响,也受干燥设备和试样贮存时间的影响。试验干燥参数对百合品质指标色泽ΔE*值、VC含量和复水比的综合影响大小依次为干燥温度>热风速度>相对湿度,品质指标色泽ΔE*值和VC含量受干燥参数影响较大,复水比较小。  相似文献   

3.
将真空—蒸汽脉动烫漂预处理技术应用于百合的烫漂预处理,研究蒸汽烫漂时间、烫漂循环次数和真空度对百合烫漂后干燥特性、水分有效扩散系数、色泽和复水比的影响。结果表明:蒸汽烫漂时间、烫漂循环次数和真空度均对烫漂后百合的干燥特性有显著性影响,当蒸汽烫漂时间30 s,烫漂循环3次,真空度90 kPa时,百合烫漂充分,提高了细胞间的通透性并抑制PPO、POD酶的活性,烫漂后在60 ℃热风下干燥,最短为11.7 h;干燥后的百合片色泽L*值为83.65、ΔE值为5.18,接近于新鲜百合色泽;复水比最高为1.49 g/g,水分有效扩散系数最大为6.85×10-10 m2/s;综合评分最高为0.98。  相似文献   

4.
以未漂硫酸盐针叶木浆为干燥对象,研究了热风温度和风速对浆板干燥特性的影响。利用Weibull分布函数对浆板的干燥特性曲线进行了模拟,并建立热风温度、风速与模型中参数(尺度参数α、形状参数β)的定量关系。结果表明,Weibull分布函数可以很好地模拟浆板的热风干燥过程;模型的尺度参数α与热风温度和风速有关,并且随热风温度和风速的升高而降低;模型的形状参数β与热风风速有关,随热风风速的升高而降低;浆板热风干燥过程的估算水分扩散系数在2. 116×10-7~3. 251×10-7m2/s之间,干燥活化能为14. 8 kJ/mol。  相似文献   

5.
以红心甘薯为原料,优化低脂甘薯片生产过程中漂烫、热风干燥、油炸等关键工艺参数,以产品含油率和色差(L*值和b*值)为评价指标,并通过响应面优化确定最优的低脂甘薯片生产工艺.结果表明,较优漂烫工艺条件为:漂烫温度70℃,漂烫时间7 min;较优的热风干燥工艺条件为:热风干燥温度70℃,热风干燥时间40 min;最优油炸工...  相似文献   

6.
工艺参数对苹果果脯护色效果的影响   总被引:1,自引:0,他引:1  
以山东红富士为原料,以感官评价、亮度(L值)、褐变度为评价指标,考察切片厚度、植酸浓度、微波漂烫功率、微波漂烫时间、热风干燥温度及干燥时间对苹果果脯护色效果的影响,并比较植酸与其他护色剂对果脯贮藏性的影响。结果表明:苹果果脯护色的最佳条件为切片厚度8mm、植酸浓度0.12%、微波漂烫功率为中高火、微波漂烫时间80s、干燥时间4h、干燥温度70℃,此时苹果果脯护色效果最佳,且口感好。贮藏期间不同护色剂的护色效果依次为植酸抗坏血酸柠檬酸NaCl。  相似文献   

7.
为建立罗非鱼片干燥过程动力学模型,以超声波辅助渗透处理后的罗非鱼片为研究对象,利用真空微波干燥设备,探讨不同厚度(5、7、9 mm)、微波功率(264、330、396 W)以及真空度(0.05、0.06、0.07 MPa)对罗非鱼片干燥过程的影响,采用3种经典薄层干燥模型和Weibull函数对其干燥曲线进行非线性拟合分析。结果表明:干燥时间对干燥条件的依赖性很大,随着鱼片厚度(T)、微波功率(W)和真空度(V)的改变而变化;Weibull模型拟合优度较好;基于Weibull函数计算求得估算有效水分扩散系数(Dcal)在1.187 7×10-6~2.052 1×10-6 m2/s范围内随着微波功率(W)与真空度(V)的增加而增大;几何参数Rg与厚度(T)、微波功率(W)及真空度(V)呈负相关;在实验范围内根据Arrhenius方程计算出干燥活化能为0.92 W/g,干燥较易实现。该研究可为真空微波干燥罗非鱼片工艺条件的完善和Weibull函数在罗非鱼片真空微波干燥技术的运用提供参...  相似文献   

8.
为了探究Weibull分布函数中各参数的影响因素及其在干燥中的应用,以猕猴桃切片在不同的微波真空干燥功率(330,460,590W)、真空度(-50,-70,-90k Pa)条件下的干燥过程为研究对象,利用Weibull分布函数对其干燥动力学曲线进行模拟、分析,结果表明:Weibull分布函数能够很好地模拟猕猴桃切片微波真空干燥过程;尺度参数α与微波功率和真空度均有关,并且随着微波功率和真空度的升高而降低;而干燥变量对形状参数β的影响较小。通过计算求出干燥过程中的估算水分有效扩散系数,其值在3.45078×10-7~6.74613×10-7m2/s范围内随着微波功率和真空度的升高而增大;通过阿伦尼乌斯方程计算出真空度为-50,-70和-90 k Pa时,干燥的活化能分别为1.34701,1.49099和1.57108 W/g。本研究为Weibull分布函数在猕猴桃切片微波真空干燥技术提供了技术依据。  相似文献   

9.
基于Weibull分布函数的枸杞微波干燥过程模拟及应用   总被引:2,自引:0,他引:2       下载免费PDF全文
为了探究Weibull分布函数中各参数的影响因素及其在枸杞微波热风联合干燥中的应用,以枸杞在不同脉冲比(脉冲比1.5:2 min/1 min;脉冲比1.67:3 min/2 min;脉冲比2:1 min/1 min)、微波功率(185、200、215 W)、微波介入时枸杞含水率(30%,40%,50%)条件下的干燥过程为研究对象,利用Weibull分布函数对其干燥动力学曲线进行模拟并通过建立的Weibull模型对枸杞微波干燥过程中的水分有效扩散系数和干燥活化能进行分析。实验表明:Weibull分布函数能够较好地模拟枸杞的微波干燥过程;尺度参数α与微波脉冲比、微波功率以及含水率均有关,并且随着微波功率的升高而降低,随着微波脉冲比和含水率的升高而升高;而初始含水率、脉冲比和微波功率对形状参数β的影响较小;根据Weibull分布含水分析得到枸杞的水分有效扩散系数为1.7×10~(-5)~3.2×10~(-5)m~2/h以及枸杞的干燥活化能为54.78 k J/mol。  相似文献   

10.
《食品与发酵工业》2015,(5):138-143
为确定冬瓜热风干燥过程中的最佳工艺参数组合,对冬瓜热风干燥进行试验研究,探讨了切片厚度、烫漂时间和热风干燥温度对冬瓜含水率、干燥速率的影响,在单因素的基础上,通过响应面分析切片厚度、烫漂时间及干燥温度与干制产品的复水性、色泽、Vc保留率以及干燥时间之间的关系,建立二次回归数学模型,确定了冬瓜热风干燥的最佳工艺参数组合。结果表明:冬瓜切片厚度、烫漂时间和热风干燥温度对干燥时间、复水比、色泽和Vc保留率均有显著影响,冬瓜热风干燥的最佳工艺参数组合为切片厚度2 mm,烫漂时间60 s,干燥温度50℃。  相似文献   

11.
为探讨直触式超声对热风干燥过程的强化效果,以紫薯为干燥试材,利用超声热风干燥设备,研究不同干燥温度(40、50、60、70℃)及不同超声功率(0、30、60 W)条件下,紫薯片的干燥特性和品质变化规律,并利用Weibull函数对干燥过程进行了动力学模拟。结果表明:随着干燥温度的升高和超声波功率的增加,干燥时间明显缩短,干燥速率显著提高;Weibull分布函数可实现较高的模型精度;尺度参数α范围在92.317~345.764 min之间,且随着干燥温度升高和超声功率增大而减小,形状参数β在0.817~1.032之间,表明超声强化热风干燥紫薯的干燥过程由内部扩散阻力控制;水分扩散系数D_(cal)的范围为1.205×10~(-10)~4.513×10~(-10) m~2/s,其值随干燥温度和超声功率的升高而增大;干燥活化能随着超声功率的增加而相应减少;在相同超声功率下,随着干燥温度升高,总酚和总黄酮含量基本呈现先升高后下降的趋势;在较低干燥温度条件下,增大超声功率有利于提高总酚和总黄酮含量,但在较高温度条件下,增大超声功率则不利于总酚和总黄酮成分的保持。将超声技术用于热风干燥过程的强化可有效提高干燥速率和干燥品质。  相似文献   

12.
基于控温的莲子微波干燥特性及干燥品质研究   总被引:1,自引:0,他引:1  
为了探索基于控温下的莲子微波干燥特性及干燥品质,研究不同微波功率、物料表面温度区间对莲子微波干燥特性的影响,对莲子进行了微波控温干燥试验,并将基于控温下的微波干燥莲子与热风干燥莲子在品质上进行了分析。研究结果表明:物料表面温度对莲子干燥影响较大,物料表面温度区间越大,莲子干燥速率越快,干燥时间越短;微波干燥功率对莲子干燥影响较小。采用7种常见的薄层干燥模型对控温微波干燥过程进行拟合,结果表明Midilli模型是最适合描述在莲子微波控温干燥过程中水分变化规律的薄层干燥模型。根据Fick第二定律得出莲子控温微波干燥的有效扩散系数为8.9891×10-10~2.22431×10-9 m2/s;由Arrhenius方程得出莲子微波控温干燥的活化能为79.85 kJ/mol。两种干燥方式干燥的莲子复水率差异不显著(p>0.05);莲子控温微波最短干燥时间低于热风干燥。研究结果可为莲子控温微波联合干燥工艺提供参考。  相似文献   

13.
为解决微波干燥不均问题,提升藕条的干燥品质,作者以热风干燥(Hot-Airflow Drying,AD)为对照,利用自主研制的微波热风滚动床干燥(Microwave Hot-Airflow Rolling-Bed Drying,MARD)装备,研究了沸水漂烫和未漂烫下藕条在MARD不同干燥阶段的热像分布,以及"干基水分质量分数-干燥时间"变化曲线,分析了不同工艺下物料的感官品质和微观结构。结果表明:藕条MARD过程在热风和微波的协同作用下温度逐渐升高,最终稳定在设定范围。沸水漂烫减少MARD干燥时间10~15 min,对MARD过程热像分布影响不显著。沸水漂烫会使脱水藕条的色泽变暗,沸水漂烫和微波干燥过程都会破坏藕条的微观结构。  相似文献   

14.
采用控制变量法,以胡萝卜为试验材料,分析了45、55、65 ℃时高压静电场对热风干燥时间、能耗、品质及复水率的影响,利用Weibull函数对胡萝卜干燥过程进行拟合。结果表明:热风干燥添加高压静电场可提高胡萝卜干燥速率,进而缩短干燥时间,加入高压静电场后,能耗与传统热风相比有所降低。高压静电场主要作用于热风干燥前期,热风-静电联合干燥所得胡萝卜干制品品质较好,证实Weibull拟合函数适用于胡萝卜静电-热风干燥。  相似文献   

15.
低糖板栗果脯微波-热风结合干燥技术的研究   总被引:1,自引:0,他引:1  
采用微波和热风干燥,研究了低糖板栗果脯在干燥过程中的品质变化,并利用数学建模的方法对低糖板栗果脯的微波和热风干燥过程进行模拟。实验结果表明,最佳干燥工艺为:初始微波干燥功率密度为2W/g,水分含量干燥至20%时(干燥时间18min),再换用60℃热风干燥至水分含量15%,整个干燥过程总需138min。低糖板栗果脯前期微波干燥可用Page方程描述,后期热风干燥可用Henderson and Pabis模型描述。相比传统热风干燥,微波-热风结合干燥低糖板栗果脯不仅缩短了干燥时间,而且能提高果脯的品质。  相似文献   

16.
张鸿  郑志  熊宇豪  于世朗  赵妍嫣 《食品工业科技》2020,41(20):177-181,187
为研究微波辅助热风干燥预处理对油炸紫薯片品质的影响,以厚度为3 mm的新鲜紫薯片为对象,首先采用不同微波功率(259、280、358 W)辅助热风(50、60、70 ℃)干燥方式对紫薯片进行预干燥,对不同微波功率(259、280、358 W)干燥后的紫薯片油炸8、3.5、2.5 min,研究紫薯片预处理过程的干燥特性及花青素含量,以及油炸紫薯片产品的色泽、脆度、硬度和脂肪含量等。结果表明:随着微波预处理功率的升高,紫薯片达到干燥终点的时间缩短(90 min以上),平均干燥速率显著提高;并且热风干燥温度越高,微波预处理对干燥效率的促进作用也越明显。而低功率(259 W)的微波辅助50 ℃热风干燥联用更有利于干燥紫薯片花青素的留存;较低功率(259、289 W)的微波预处理不仅在保护产品颜色上具有优势,还可以使得油炸紫薯片更高的硬度和更好的脆性。在不同微波预处理功率下,油炸紫薯片的脂肪含量最低值基本一致。本研究可为微波辅助热风技术在干燥紫薯及其他农产品干燥中的应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号