首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用等效力学模型法研究了多腔体充液晃动问题.在单腔体等效模型的基础上给出了多腔体充液体的等效模型,并分析了液体分散到多个腔体后对飞行器带来的影响.结果表明,从频带的改善到作用力的减少等方面,一般情况下多个腔体的力学特性更有利于飞行器的动力学与控制设计.  相似文献   

2.
本文研究了三轴稳定充液航天器控制系统中同时存在测量不确定,外部未知干扰,参数不确定和控制输入饱和的鲁棒自适应姿态机动控制问题.建模过程中,将晃动液体燃料等效为粘性球摆模型,采用动量矩守恒定律推导出充液航天器的耦合动力学方程.提出了一种将反步控制方法结合非线性干扰观测器和指令滤波器的鲁棒饱和输出反馈复合控制策略,该控制策略不仅能继承反步控制方法的优点,而且通过引入非线性干扰观测器实现对未知外部干扰,参数不确定以及测量不确定的补偿,还能利用指令滤波器处理控制力矩输入饱和的不利影响.基于Lyapunov稳定性分析方法证明了系统状态变量的渐进稳定性.仿真结果验证了提出控制方法的有效性和鲁棒性.  相似文献   

3.
The thrust vector control (TVC) of rocket engines is used when the aerodynamic surfaces are inadequate to control vehicles or when a greater agility may be required of a missile. Traditionally, in all spacecraft to date actuators used to gimbal the engine have been hydraulic. The subject of this paper is the TVC with gimballed nozzle assembly controlled by an electrohydraulic servosystem, where two linear hydraulic servoactuators gimbal the engine. Each servoactuator is controlled by an electrohydraulic servovalve. The thrust vector direction is a result of the motion of both servoactuators. In this paper the TVC system is treated as a robotic system that allows developing the procedure of solving an inverse kinematics problem as well as the control of the robotic system in the output space instead of in the space of internal dynamics. The position feedback is provided by measuring the direction of the thrust vector, instead of measuring the displacements of the servoactuators. A linear model of the servosystem has been developed and simulated. The proposed control concept has experimentally been validated in the TVC test bench.  相似文献   

4.
采用一种智能结构方法实现复杂非线性系统的控制,给出了设计原则,并用第四代歼击机飞行控制系统设计一个复杂实例来说明方法的有效性,实例系统中包含了两种控制律:增益调参和非线性动态逆控制律,两种控制律都包括了对发动机推力矢量喷管的控制。文中采用了一种基于状态的控制律切换算法进行两类控制律的切换,考虑了变结构系统切换瞬态问题和强迫振荡问题,并给出了简便的解决方法。  相似文献   

5.
We consider the problem of periodic motion planning and of designing stabilising feedback control laws for such motions in underactuated mechanical systems. A novel periodic motion planning method is proposed. Each state is parametrised by a truncated Fourier series. Then we use numerical optimisation to search for the parameters of the trigonometric polynomial exploiting the measure of discrepancy in satisfying the passive dynamics equations as a performance index. Thus an almost feasible periodic motion is found. Then a linear controller is designed and stability analysis is given to verify that solutions of the closed-loop system stay inside a tube around the planned approximately feasible periodic trajectory. Experimental results for a double rotary pendulum are shown, while numerical simulations are given for models of a spacecraft with liquid sloshing and of a chain of mass spring system.  相似文献   

6.
超机动飞机的动态建模与控制律设计及仿真   总被引:1,自引:0,他引:1  
建立了带推力矢量的超机动飞机非线性动态模型,重点分析了气动力、气动力矩以及发动机的建模过程.采用基于神经网络的自适应逆方法,设计了超机动飞机大迎角机动下的控制律.首先应用动态逆方法,分别设计了快慢回路的飞行控制律;然后利用BP神经网络,在线补偿飞机模型不确定性以及外界干扰.眼镜蛇机动的仿真结果表明,所设计的控制律在大迎角机动条件下具有良好的控制性能,能够保证闭环系统的稳定性.  相似文献   

7.
讨论了充液航天器大角度姿态机动自适应非线性动态逆控制设计.推导了航天器-液体晃动耦合系统动力学方程.采用单摆等效力学模型对液体燃料晃动进行动力学建模.由于充液航天器控制系统的强耦合非线性,故采用神经网络构造系统的自适应非线性动态逆控制器.通过实际算例对该控制器的跟综性能进行了测试,结果证明该自适应非线性动态逆控制器在包...  相似文献   

8.
Three-dimensional attitude and shape control problems are studied for a class of spacecraft with articulated appendages and reaction wheels. A number of special cases of such attitude control problems have been studied previously. We provide a unified formulation and a comprehensive set of results for planning of attitude and shape maneuvers of a spacecraft, assuming that joint actuators and reaction wheels provide a sufficiently rich set of inputs. The development is based on a nonlinear, drift-free, control model that characterizes the attitude and shape change dynamics, assuming zero angular momentum of the system. Controllability results are presented for the general case, and specialized results are identified for interesting multibody spacecraft configurations. These results are made explicit by providing computable formulas for the Lie brackets in terms of the spacecraft geometry, mass properties, and shape. Constructive motion planning approaches are described to achieve spacecraft attitude and shape change maneuvers. A distinct feature of these approaches is that they require only simple computations, as is desirable for online implementation. Emphasis is given to the interplay between the shape change dynamics and the attitude change dynamics in achieving the maneuver planning objectives  相似文献   

9.
Nonlinear feedback control with global stabilization   总被引:2,自引:0,他引:2  
Hamilton-Jacobi-Bellman theory is shown to provide a unified framework for nonlinear feedback control laws for special classes of nonlinear systems. These classes include Jurdjevic-Quinn type systems, as well as minimum phase systems with relative degree {1, 1, ..., 1}. Several examples are given to illustrate these results. For the controlled Lorenz equation, results obtained by Vincent and Yu are extended. Next, for spacecraft angular velocity stabilization with two torque inputs, a family of nonlinear feedback control laws that globally asymptotically stabilize angular velocity is established. Special cases of this family of control laws include generalizations of the locally stabilizing control laws of Brockett and Aeyels to global stabilization as well as the globally stabilizing control laws of Irving and Crouch and Byrnes and Isidori. Finally, the results are applied to spacecraft angular velocity stabilization with only one torque input. These last results extend control laws given by Outbib and Sallet.  相似文献   

10.
考虑作动器动态补偿的飞机增量滤波非线性控制   总被引:1,自引:0,他引:1  
针对飞机大迎角机动存在的模型参数不确定问题,提出了一种考虑作动器动态补偿的增量滤波非线性控制方法.基于推力矢量飞机姿态控制模型,利用Taylor级数展开和状态导数反馈分别设计了增量形式的气流角和角速度控制器.针对低通滤波求取状态导数产生的延迟,通过对控制量进行滤波补偿保证了状态导数反馈和控制量反馈的时间同步性.在此基础上分析了作动器动态对角速度闭环控制性能的影响,通过补偿器设计使系统具有期望的作动器动态,克服了增量式控制方法对作动器高带宽的限制.仿真结果表明本文提出的增量滤波非线性控制方法具有强鲁棒性和快速动态响应能力.  相似文献   

11.
A robust nonlinear control method is presented for spacecraft precise formation flying.With the constraint forces and consid-ering nonlinearity and perturbations,the problem of the formation keeping is changed to the Lagrange systems with the holonomic constraints and the differential algebraic equations (DAE).The nonlinear control laws are developed by solving the DAE.Because the traditional numerical solving methods of DAE are very sensitive to the various errors and the resulting con-trol laws are not ro...  相似文献   

12.
A multidisciplinary design and optimization (MDO) method is presented to support the design process of partially filled liquid containers subject to the disciplines of sloshing and impact analyses. Experimental techniques are used to understand sloshing as a phenomenon and to evaluate the computational fluid dynamics code. Validation includes qualitative comparison of visual free-surface behavior and quantitative comparisons of pressure measurements in the time and frequency domain. The liquid motion exhibits good comparisons in time. Deviations are caused by both the experimental signal filtration process and deficiencies in the low-frequency measurement capability of the accelerometer. The first two odd oscillatory modes are accurately captured. An objective function for the quantitative evaluation of the sloshing phenomenon is proposed. For impact, the von Mises baffle stress is used. Single and multidisciplinary optimization formulations using LS-OPT are presented and examined. The multidisciplinary optimum proved to be a compromise between the optima obtained when considering the two single disciplines independently.  相似文献   

13.
The problem of modeling vehicle longitudinal motion is addressed for front wheel propelled vehicles. The chassis dynamics are modeled using relevant fundamental laws taking into account aerodynamic effects and road slop variation. The longitudinal slip, resulting from tire deformation, is captured through Kiencke's model. A highly nonlinear model is thus obtained and based upon in vehicle longitudinal motion simulation. A simpler, but nevertheless accurate, version of that model proves to be useful in vehicle longitudinal control. For security and comfort purpose, the vehicle speed must be tightly regulated, both in acceleration and deceleration modes, despite unpredictable changes in aerodynamics efforts and road slop. To this end, a nonlinear controller is developed using the Lyapunov design technique and formally shown to meet its objectives i.e. perfect chassis and wheel speed regulation.  相似文献   

14.
The configuration space for rigid spacecraft systems in a central gravitational field can be modeled by SO(3)× IR3, where the special orthogonal group SO(3) represents the attitude dynamics and IR3 is for the orbital motion. The attitude dynamics of the spacecraft system is affected by the orbital elements through the well-known gravity-gradient torque. On the other hand, the effects of attitude-orbit coupling can also possibly be used to alter orbital motions by controlling the attitude. This controllability property is the primary issue of this paper. The control systems for spacecraft with either reaction wheels or gas jets being used as attitude controllers are proven in this study to be controllable. Rigorously establishing these results necessitates starting with the formal definitions of controllability and Poisson stability. It is then shown that if the drift vector field of the system is weakly positively Poisson stable and the Lie algebra rank condition is satisfied, controllability can be concluded. The Hamiltonian structure of the spacecraft model provides a natural route of verifying the property of weakly positive Poisson stability. Accordingly, the controllability is obtained after confirming the Lie algebra rank condition. Developing a methodology in deriving Lie brackets in the tangent space of T(SO(3)×IR3), i.e., the second tangent bundle is thus deemed necessary. A general formula is offered for the computation of Lie brackets of second tangent vector fields in TT(SO(3)m×IRn), in light of its importance in the fields of mechanics, robotics, optimal control, and nonlinear control, among others. With these tools, the controllability results can be proved. The analysis in this paper gives some insight into the attitude-orbit coupling effects and may potentially lead towards new techniques in designing controllers for large spacecraft systems  相似文献   

15.
A new method to design asymptotically stabilizing and adaptive control laws for nonlinear systems is presented. The method relies upon the notions of system immersion and manifold invariance and, in principle, does not require the knowledge of a (control) Lyapunov function. The construction of the stabilizing control laws resembles the procedure used in nonlinear regulator theory to derive the (invariant) output zeroing manifold and its friend. The method is well suited in situations where we know a stabilizing controller of a nominal reduced order model, which we would like to robustify with respect to higher order dynamics. This is achieved by designing a control law that asymptotically immerses the full system dynamics into the reduced order one. We also show that in adaptive control problems the method yields stabilizing schemes that counter the effect of the uncertain parameters adopting a robustness perspective. Our construction does not invoke certainty equivalence, nor requires a linear parameterization, furthermore, viewed from a Lyapunov perspective, it provides a procedure to add cross terms between the parameter estimates and the plant states. Finally, it is shown that the proposed approach is directly applicable to systems in feedback and feedforward form, yielding new stabilizing control laws. We illustrate the method with several academic and practical examples, including a mechanical system with flexibility modes, an electromechanical system with parasitic actuator dynamics and an adaptive nonlinearly parameterized visual servoing application.  相似文献   

16.
ABSTRACT

In this paper, we address the robust control design problem for nonlinear dynamical systems tracking unreliable reference signals. Specifically, we present robust model reference adaptive control laws that guarantee uniform ultimate boundedness of the trajectory tracking error for nonlinear plants that are affected by matched, unmatched, and parametric uncertainties, and are subject to constraints on the state space and the measured output. These control laws guarantee satisfactory results even in case the reference trajectory or the reference output signal do not verify the given constraints and hence, may draw the plant's trajectory or measured output outside their constraint sets. A numerical example involving the attitude control of a spacecraft illustrates the feasibility of the theoretical results presented.  相似文献   

17.
Problems of three-dimensional trajectory optimization of transfers for stage spacecraft and spacecraft with auxiliary fuel tank (AFT) from the low circuit orbit of the Earth’s artificial satellite (EAS) into the geostationary orbit and optimization problems of fuel distribution in stages or tanks are solved. Control of spacecraft motion is conducted by jet engines of bounded thrust; stage engines can have different characteristics, i.e., thrust-to-weight ratio and specific thrust. The used stage or auxiliary fuel tank is detached on the passive segment. Detachment is considered to be instantaneous, if the spacecraft position and velocity do not change at the detachment instant and the mass decreases in jumping mode. The mass of detached tanks is considered proportionate to the mass of consumed fuel; the mass of engine and auxiliary constructions, to thrust-to-weight ratio. The useful mass of the spacecraft with the limited time of transfer is maximized. The considered problems are intricate nonlinear optimal control problems with discontinuous phase variables. They are formalized as optimal control problems by a union of dynamic systems and are solved on the basis of the corresponding principle of the maximum. In this paper, boundary-value problems of the principle of the maximum are numerically solved by the shooting method. The choice of computing schemes of the shooting method and solution to systems of nonlinear equations is conducted by using a series of auxiliary problems.  相似文献   

18.
19.
Control of frictional forces is required in many applications of tribology. While the problem is approached by chemical means traditionally, a recent approach was proposed to control the system mechanically to tune frictional responses. We design feedback control laws for a one-dimensional particle array sliding on a surface subject to friction. The Frenkel-Kontorova model describing the dynamics is a nonlinear interconnected system and the accessible control elements are average quantities only. We prove local stability of equilibrium points of the un-controlled system in the presence of linear and nonlinear particle interactions, respectively. We then formulate a tracking control problem, whose control objective is for the average system to reach a designated targeted velocity using accessible elements. Sufficient stabilization conditions are explicitly derived for the closed-loop error systems using the Lyapunov theory based methods. Simulation results show satisfactory performances. The results can be applied to other physical systems whose dynamics is described by the Frenkel-Kontorova model.  相似文献   

20.

在追踪航天器本体坐标系下, 联合相对轨道动力学模型和四元素姿态动力学模型, 引入推进器配置矩阵, 建立六自由度姿态和轨道一体化模型. 该模型避免了控制输入向追踪器本体坐标系下的转换. 在此基础上, 采用输入-状态(ISS) 稳定性原理, 在干扰输入信息完全未知的情况下, 设计了非线性鲁棒一体化控制律. 该控制律实现了对椭圆轨道上目标航天器的扰动抑制和跟踪, 具有较好的鲁棒性和跟踪性. 最后, 针对运行在椭圆轨道上的目标给出仿真结果, 表明了所提出的一体化控制律的可行性和有效性.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号