首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This paper presents two hybrid genetic algorithms (HGAs) to optimize the component placement operation for the collect-and-place machines in printed circuit board (PCB) assembly. The component placement problem is to optimize (i) the assignment of components to a movable revolver head or assembly tour, (ii) the sequence of component placements on a stationary PCB in each tour, and (iii) the arrangement of component types to stationary feeders simultaneously. The objective of the problem is to minimize the total traveling time spent by the revolver head for assembling all components on the PCB. The major difference between the HGAs is that the initial solutions are generated randomly in HGA1. The Clarke and Wright saving method, the nearest neighbor heuristic, and the neighborhood frequency heuristic are incorporated into HGA2 for the initialization procedure. A computational study is carried out to compare the algorithms with different population sizes. It is proved that the performance of HGA2 is superior to HGA1 in terms of the total assembly time.  相似文献   

2.

The layout optimization problem of complex box girder structure is solved with a new method RBF-NNM-APSO formed with the digital neural network model (NNM) of radial basis function (RBF) and adaptive particle swarm optimization (APSO) algorithm in this paper. The optimized surrogate model is proposed and applied to the configuration optimization of heavy-duty box girder of casting crane for improving the mechanical properties of the optimized object and expediting proceedings. First, the parametric command flow finite element numerical model of box girder is established. The RBF neural network is trained by constructing a mixed orthogonal experimental table of parameters, and the relationship between the design variables and the maximum stress and deformation is established. Subsequently, the trained RBF neural network design scheme is optimized by APSO algorithm. Finally, on the premise of not increasing the total mass, a new layout form of box girder is obtained.

  相似文献   

3.
In printed circuit board (PCB) assembly, the efficiency of the component placement process is dependent on two interrelated issues: the sequence of component placement, that is, the component sequencing problem, and the assignment of component types to feeders of the placement machine, that is, the feeder arrangement problem. In cases where some components with the same type are assigned to more than one feeder, the component retrieval problem should also be considered. Due to their inseparable relationship, a hybrid genetic algorithm is adopted to solve these three problems simultaneously for a type of PCB placement machines called the sequential pick-and-place (PAP) machine in this paper. The objective is to minimise the total distance travelled by the placement head for assembling all components on a PCB. Besides, the algorithm is compared with the methods proposed by other researchers in order to examine its effectiveness and efficiency.  相似文献   

4.
Optimization of multi-pass turning using particle swarm intelligence   总被引:1,自引:1,他引:0  
This paper proposes a methodology for selecting optimum machining parameters in multi-pass turning using particle swarm intelligence. Often, multi-pass turning operations are designed to satisfy several practical cutting constraints in order to achieve the overall objective, such as production cost or machining time. Compared with the standard handbook approach, computer-aided optimization procedures provide rapid and accurate solutions in selecting the cutting parameters. In this paper, a non-conventional optimization technique known as particle swarm optimization (PSO) is implemented to obtain the set of cutting parameters that minimize unit production cost subject to practical constraints. The dynamic objective function approach adopted in the paper resolves a complex, multi-constrained, nonlinear turning model into a single, unconstrained objective problem. The best solution in each generation is obtained by comparing the unit production cost and the total non-dimensional constraint violation among all of the particles. The methodology is illustrated with examples of bar turning and a component of continuous form.  相似文献   

5.
微波多层印制板制造技术是实现有源相控阵雷达低剖面渐变槽线天线单元的关键技术。文中介绍了为解决印制板基材与金属化孔热膨胀系数差异问题以及多阶台阶结构层压问题而开展的微波多层印制板基材匹配技术和多阶台阶结构层压技术。选用合理的层压温度、压力、时间和阻胶技术,实现了高质量的微波多层印制板制造,同时引入金属化孔加固技术进一步提高了可靠性。研究结果表明,上述技术为相控阵雷达实现优异的宽带宽角扫描驻波性能及低剖面提供了可能,并且可供此类微波多层印制板的制造借鉴。  相似文献   

6.
A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions.  相似文献   

7.
This paper presents the technique for checking collision of through-hole components during the machine insertion process on a printed circuit board (PCB). The spatial representation technique is used to represent the components and the mounting head of an insertion machine. An algorithm that simulates the insertion process is written to detect any collision of component and mounting head during the insertion process. When a collision is detected, the algorithm will attempt to avoid the collision by re-sequencing the components concerned. If resequencing does not avoid the collision, the algorithm will compute a minimum safe distance for the affected component. The algorithm can also detect component collision due to components' space overlapping each other and subsequently can provide the minimum safe distance. The required safe spacing is based on the type of mounting head or machine used. The algorithm is a useful and efficient tool that could be used during the PCB design stage. The effectiveness of the spatial representation technique has been demonstrated using the TDK VC-544R/AR insertion machine.  相似文献   

8.
A rule-based frame system for concurrent assembly machines   总被引:1,自引:0,他引:1  
The aim of this research is to develop a rule-based frame system for printed circuit board (PCB) assembly to generate the component feeder arrangement and placement sequence for concurrent chip placement machines. A knowledge base of frames, assertions and rules are used in the methodology to solve the PCB assembly process of SMT components. The system has been implemented using an AI programming environment, GOLDWORKS®. A heuristic approach is used to minimize placement cycle time in PCB assembly. The objective of the solution method is to reduce theX-Y table displacement, movement and component feeder translation movement. Such a system is aimed at obtaining good solutions to the problem as illustrated by an example.  相似文献   

9.
发光二极管制造过程中,晶粒分类拣选工序的调度问题是典型的并行多机开放车间调度问题,属于NP-hard问题。研究了该调度问题以最小化总加权完工时间为目标的求解模型与算法。根据问题特性构建了可获得最优解的混合整数规划模型,并设计了同时考虑质量与求解效率的启发式算法和改进粒子群优化算法。仿真结果显示,启发式算法和改进粒子群优化算法都能在合理的时间内迅速有效地获得较佳的调度解。  相似文献   

10.
In this paper, a new meta-heuristic optimization technique, called interior search algorithm (ISA) with Lèvy flight is proposed and applied to determine the optimal parameters of an unknown infinite impulse response (IIR) system for the system identification problem. ISA is based on aesthetics, which is commonly used in interior design and decoration processes. In ISA, composition phase and mirror phase are applied for addressing the nonlinear and multimodal system identification problems. System identification using modified-ISA (M-ISA) based method involves faster convergence, single parameter tuning and does not require derivative information because it uses a stochastic random search using the concepts of Lèvy flight. A proper tuning of control parameter has been performed in order to achieve a balance between intensification and diversification phases. In order to evaluate the performance of the proposed method, mean square error (MSE), computation time and percentage improvement are considered as the performance measure. To validate the performance of M-ISA based method, simulations has been carried out for three benchmarked IIR systems using same order and reduced order system. Genetic algorithm (GA), particle swarm optimization (PSO), cat swarm optimization (CSO), cuckoo search algorithm (CSA), differential evolution using wavelet mutation (DEWM), firefly algorithm (FFA), craziness based particle swarm optimization (CRPSO), harmony search (HS) algorithm, opposition based harmony search (OHS) algorithm, hybrid particle swarm optimization-gravitational search algorithm (HPSO-GSA) and ISA are also used to model the same examples and simulation results are compared. Obtained results confirm the efficiency of the proposed method.  相似文献   

11.
研究以最小化最大流程时间为调度目标的离散型生产作业中的置换流水车间调度问题,将基于激素调节机制的改进型自适应粒子群算法应用到其中。在该算法中,粒子群算法的个体最优初始值不再是随机生成,而是由基于启发式信息的贪婪随机自适应算法得到的工件加工顺序转换而成,同时借鉴激素调节机制,引入激素调节因子,根据单个粒子周围的粒子的信息,对粒子的飞行方程进行改进,以提高搜索效率和搜索质量。对置换流水车间调度实例Rec系列基准问题进行测试,结果验证算法的有效性。  相似文献   

12.
Printed circuit boards (PCB) are used extensively in industry for the manufacture of electronic and electromechanical products. One of the primary concerns in the manufacture of PCBs is the determination of the optimal assembly plan. This paper presents work that leads to the development of an approach to PCB assembly planning using genetic algorithms (GAs). The approach takes into consideration component insertion priority and sequencing decision rules. A polygamy reproduction mechanism with dual mutation has been proposed and implemented. Details of the approach are described. A PCB model extracted from the literature was used for performance evaluation. Details of the evaluation are presented.  相似文献   

13.
针对齿轮故障诊断问题,利用数理统计特征提取方法、深度学习神经网络、粒子群算法和支持向量机等技术,提出了一种基于深度学习特征提取和粒子群支持向量机状态识别相结合的智能诊断模型。该模型利用深度学习自适应提取的频谱特征与数理统计方法提取的时域特征相结合组成联合特征向量,然后利用粒子群支持向量机对联合特征向量进行故障诊断。该模型在对多级齿轮传动系统试验台的故障诊断中实现了中速轴大齿轮不同故障类型的可靠识别,获得了满意的诊断结果。应用结果也验证了基于深度学习自适应提取频谱特征的有效性。  相似文献   

14.
基于粒子群优化的核主元分析特征的提取技术   总被引:1,自引:1,他引:0  
针对核主元分析在参数设置上的盲目性,提出应用粒子群优化算法优化核函数参数.并将核主元分析应用于特征提取中.首先建立核函数参数优化的数学模型,然后应用加速度自适应粒子群优化算法对其寻优,并通过Iris数据集进行仿真研究,验证其提取特征的有效性.将优化的核主元分析方法应用于齿轮箱典型故障的特征提取中,结果表明:参数优化的核主元分析能有效降低齿轮箱特征向量的维数,较线性主元分析取得更好的故障识别效果.该方法在机械故障信号的非线性特征提取中具有优势.  相似文献   

15.
基于改进粒子群优化算法的多目标铜卷加工生产调度研究   总被引:1,自引:0,他引:1  
针对多目标铜卷加工生产调度问题,提出一种自适应的改进粒子群优化算法。该算法采用基于个体拥挤距离排序的外部种群保留策略以避免陷入局部极值,基于个体拥挤距离概率更新全局极值以及基于支配关系更新个体极值,同时采用基于非支配解和单点交叉的内部种群规模自适应调整策略以及自适应动态惯性权重来保持种群的多样性。通过应用实例验证了该方法求解多目标铜卷加工生产调度问题的有效性。  相似文献   

16.
为了提升轻工装备制造业在绿色发展过程中的可持续竞争力,在关键质量特性概念的基础上提出关键绿色质量特性(critical to green quality characteristics, CTGQs),建立CTGQs提取模型,识别出对环境影响最大的工艺过程参数,实现轻工装备在制造阶段的关键绿色质量特性提取,为实现绿色制造提供了理论基础。为更好地消除提取过程中的冗余数据,将改进ReliefF算法与自适应粒子群(adaptive particle swarm optimization, APSO)算法相结合,提高CTGQs提取准确性。最后以啤酒发酵罐为例,验证了该模型的有效性。  相似文献   

17.
This paper proposes a novel hybrid discrete particle swarm optimization (HDPSO) algorithm to solve the no-wait flow shop scheduling problems with the criterion to minimize the maximum completion time (makespan). Firstly, a simple approach is presented in the paper to calculate the makespan of a job permutation. Secondly, a speed-up method is proposed to evaluate the similar insert neighborhood solution. Thirdly, a discrete particle swarm optimization (DPSO) algorithm based on permutation representation and a local search algorithm based on the insert neighborhood are fused to enhance the searching ability and to balance the exploration and exploitation. Then, computational simulation results based on the well-known benchmarks and statistical performance comparisons are provided. It is concluded that the proposed HDPSO algorithm is superior to both the single DPSO algorithm and the existing hybrid particle swarm optimization (HPSO) algorithm from literature in terms of searching quality, robustness and efficiency.  相似文献   

18.
基于改进核模糊聚类算法的软测量建模研究   总被引:8,自引:3,他引:8  
针对发酵过程软测量建模采用单模型建模方法存在计算量大和精度较差的问题,提出一种基于改进核模糊聚类算法的多模型神经网络软测量建模方法.该方法首先使用主元分析方法对样本数据进行数据处理,所得主元变量作为模型的输入变量,然后使用基于粒子群优化算法的核模糊C均值聚类算法(PSKFCM)对数据集作聚类划分,最后针对每个聚类建立局部神经网络模型,多个局部神经网络模型估计结果的融合即为软测量模型的输出.将所提建模方法应用于红霉素发酵过程生物量浓度软测量建模,结果表明所建软测量模型具有较高的精度和良好的泛化能力.  相似文献   

19.
For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.  相似文献   

20.
The widespread use of automation in the printed circuit board (PCB) assembly domain has been dictated by the increasing density of components on PCBs coupled with the continual decrease in component lead pitch, greater product mix, smaller volumes, quality considerations, and the increased cost of labour. However, these advances in technology have also resulted in automated systems that are complex, and solving problems related to these systems requires the efficient use of extensive specialised knowledge.Expert (or knowledge-based) systems have become a widely accepted problem solving methodology for the surface mount PCB assembly domain. Nevertheless, problems in the PCB assembly domains are frequently unstructured, ill-defined, and difficult to communicate. Artificial neural networks provide a novel approach and an advanced technology to deal with the weaknesses and problems associated with expert systems.The surface mount component (SMC) placement process plays a vital and influential part in determining the throughput time of a PCB assembly line. It is important to identify an efficient component placement sequence while considering constraints such as feeder location and tooling and nozzle optimisation. This research studied the use of artificial neural networks as a complement to expert systems in PCB assembly. A prototype decision support system that combined the use of artificial neural networks and expert system techniques to identify a near optimal solution for the surface mount placement sequence problem was designed, implemented, and validated. Artificial intelligence based technologies such as expert systems and artificial neural networks were used in a mutually supportive manner to solve a complex problem within the surface mount PCB assembly domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号