首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
对克拉玛依油田五2西区克下组油藏实施气水交替驱开发效果进行了数值模拟预测及分析,其结果表明与相同井网下注水开发效果相比,采用气水交替驱开发方式能够较大幅度提高原油采收率;在实施气水交替驱期间,不会产生严重的气窜现象而影响开采效果;采用气水交替驱开发方式,不仅注气增油持续时间较长,而且在注气期间和停止注气以后的较长时间内仍有相当比例的注入气存留于地层中,起到了很好的保持地层压力和增强溶解气驱的作用,从而提高了油层动用程度.  相似文献   

2.
用数值模拟研究低渗透油藏CO2 驱影响因素   总被引:1,自引:0,他引:1  
低渗透油藏具有低丰度、低含油饱和度、低产等特点,经济有效开发难度较大。目前,“注气开发”是国内外针对低渗透油藏较为有效的开采方法。运用数值模拟器,确定了影响CO2 驱替效果的主要因素,用组分的劈分与拟合、状态方程的选取、实验数据回归等方法分析了CO2驱替的影响因素及影响程度。研究结果表明:选用气水交替开发方式,并适度增加注入压力,选取合适的井底流压对增油和提高采收率效果明显。数模结果表明,不同井网井距、非均质性、裂缝方向、注气介质等是CO2驱替的敏感控制因素,直接影响油藏开发指标和开发效果。  相似文献   

3.
低渗透油藏气水交替驱不同注入参数优化   总被引:2,自引:0,他引:2  
气窜是影响低渗透油藏注气开发效果的重要因素,气水交替(WAG)注入方式可以很好地稳定驱替前缘,从而提高宏观波及效率。低渗透油藏渗流机理复杂,影响气水交替开发效果的参数多,为了得到最佳开发效果,有必要对注入方式和参数进行优化。文中利用数值模拟方法研究了CO2注入方式和注入参数等对低渗透油藏开发效果的影响,并对长庆油田某超低渗透油藏CO2水交替注入方式及参数进行了优化。结果表明,最佳注入方式为CO2水同步注入,注入周期为1 a,段塞气水比为1∶1,段塞最佳注入总量为0.44 HCPV,最佳注入层位为底部4个小层。  相似文献   

4.
根据吉林油田某区块的油藏条件,运用数值模拟方法,研究不同注入方式下的驱油效果。数模结果显示,与水驱和连续注气方式相比,气水交替驱能大幅提高原油采收率。在气水交替驱过程中,在一定井底控制压力下,最佳气水段塞比是变化的,它与渗透率、注气速度和井底压力等因素有关。最佳气水段塞比对渗透率的变化比较敏感,注气速度其次,井底控制压力再次。随着渗透率的增加,最佳气水段塞比逐渐减小,而采收率也逐渐减小。渗透率在一定范围内,渗透率越低,气水交替驱的效果越好。这也从理论上证明,与中高渗透油藏相比,气水交替驱更适合低渗透油藏。它为油田CO2驱油技术提供了理论基础。  相似文献   

5.
针对克拉玛依油田五2西区克下组油藏设计了23 个气驱方案并预测了各方案的开采动态指标,通过数值模拟对注气年限、日注气速度和气水交替周期等注入参数进行了敏感性分析论证。研究结果表明,五2 西区克下组油藏在气水交替驱开发方式下,气水交替周期的长短不是开发动态影响的敏感因素;气水交替年限和日注气速度对注气增产油量和气换油率影响较大。与注水开采相比,注气开采能够较大幅度提高原油采收率,是改善高含水油藏开采效果的有利手段。  相似文献   

6.
为了确定低渗透油藏CO2驱技术界限,在室内进行了多组长岩心驱替实验。结果表明:在驱替压力较低时高渗岩心采收率较高,驱替压力较高时低渗岩心采收率较高;在低渗与特低渗范围内岩心气水交替驱效果好于连续气驱,超低渗范围内连续气驱效果好于气水交替驱;高渗岩心选择气水交替驱时要注意防止气段塞过大加快气窜,低渗岩心选择气水交替驱时要适当增加气段塞比例大小。  相似文献   

7.
对于孔洞型碳酸盐岩储层,由于其特殊的孔洞结构特征,一般情况下很难使用其真实岩心开展长岩心驱替实验。在不影响原有岩心孔渗结构的基础上,对岩心表面凹陷处进行特殊填补处理,以达到长岩心实验要求。文中在油藏实际条件下,开展长岩心衰竭开采实验,水驱、气驱开发实验和气水交替驱实验,统计分析不同开发方式下各阶段的驱油效率,对比评价不同开发方式的开发效果。结果表明:衰竭开采最终采收率高达30.94%;水驱开发中,适当延迟转注时间能够充分发挥弹性驱油和溶解气驱油作用,提高最终采收率,并确定最佳转注压力为80%泡点压力;气驱开发中,气体突破速度快,突破后产油量急剧下降,采收率较低;气水交替驱能有效降低含水率,提升高含水期原油采收率,在高压高含水阶段转气水交替的开发效果更为显著。该实验为合理开发孔洞型碳酸盐岩油藏提供了基础数据和技术支撑。  相似文献   

8.
由于裂缝性油藏储集空间物理性质的复杂性和特殊性,渗吸效果控制着低渗透裂缝性油藏水驱开发动态与开发效果,而脉冲渗吸驱油一直被认为是低渗透裂缝性油藏有效的开发方式。在室内实验研究的基础上,结合油藏工程等理论知识对脉冲渗吸驱油机理进行了研究,得出脉冲增压改善基质岩块孔隙中渗吸条件是脉冲注水方式提高渗吸驱油效率的根本原因。  相似文献   

9.
根据吉林油田某低渗透区块的油藏条件,运用数值模拟方法研究不同驱替方式下的驱油效果。数模结果显示,交替驱替方式优于注水方式和连续气驱方式,能大幅度提高原油采收率。在交替驱过程中,气段塞和水段塞的先后顺序对采收率有显著的影响,气水交替驱优于水气交替驱,随着注气速度的增加,采收率的差值也逐渐增加。气水交替驱注入CO2能够和原油充分接触,越早注入CO2,对提高原油采收率越有利。该研究不仅为低渗透油田CO2驱油技术提供了理论基础,而且对于国家下一步进行CO2驱油和埋存潜力评价及规划具有重要的借鉴意义。  相似文献   

10.
根据吉林油田某区块的油藏条件,运用数值模拟方法,研究了不同储层类型CO2驱油效果。数模结果显示,注水开发时,正复合储层的开发效果最好,均质储层次之,反复合储层的开发效果最差。气水交替驱时,均质储层的开发效果最好,正复合储层次之,反复合储层的开发效果最差。因此,注水开发时,要优先选择正复合储层,注入井应在低渗透区,生产井应在高渗透区;储层改造时,应尽量提高生产井附近的渗透率。交替驱开发时,要优先选择均质储层,或渗透率差异较小的储层,其次是选择正复合储层。  相似文献   

11.
针对低渗特低渗透油藏CO2驱油效果差、气窜现象严重等特点,开展了CO2驱气水交替注入(WAG)方式改善CO2驱油效果研究,评价了岩心渗透率及其非均质性对气水交替驱油效果的影响;选取天然露头和人造非均质岩心,对气水交替的注入速率、注入参数及注入量进行优选,进行了WAG驱的适应性评价。研究表明,对于0.5×10-3、1×10-3和5×10-3μm^2的低渗特低渗均质岩心,气水交替驱能够实现良好的流度控制作用,延长CO2的窜逸时间,且渗透率越低,气窜时间越晚;渗透率级差为5、10和50的非均质性岩心,渗透率级差越小,气水比越高,提高采收率效果越好。渗透率级差大于10时,气窜时间明显提前,特别是当级差大于50时,气水段塞无法有效启动低渗基质中的剩余油,快速气窜而无经济效益。利用气水交替在适应界限范围内可显著降低CO2流度,延长CO2窜逸时间,启动基质中的剩余油,提高剩余油采收率。图16表2参20。  相似文献   

12.
Abstract

Management of water alternating gas (WAG) injection projects requires making decisions regarding the WAG ratio, half-cycle-slug size, and ultimate solvent slug size. The impact of these decisions affects the capital cost and ultimate incremental oil recovery. Core flooding runs were conducted on 2 and 4 ft core samples. Injection scheme (continuous gas injection [CGI] vs. WAG), WAG ratio, and slug size were investigated. In addition, miscible WAG flooding as a secondary process was investigated and its efficiency was compared to the conventional tertiary miscible gas flooding. Miscible gas flooding at different miscible WAG parameters (WAG ratio and slug size) indicate that 1:2 WAG ratio at 0.2 PV slug size is the best combination yielding the highest recovery and tertiary recovery factors. Miscible WAG flooding as a secondary process indicated a higher ultimate recovery compared to the conventional tertiary WAG flooding. However, a larger amount of gas injection is consumed particularly in the early stages of the injection process. Miscible CGI mode conducted using n-Decane as oleic phase appears to have better performance than miscible WAG injection in term of recovery. When light Arab crude oil was used as oleic phase, higher recovery was obtained for miscible WAG flooding. The reversal trend seen in is believed to be due to the presence of crude oil, which alters the rock wettability toward an oil-wet condition, preventing the water blockage during the WAG process.  相似文献   

13.
低渗透油藏水驱转空气泡沫驱提高采收率物理模拟实验   总被引:1,自引:0,他引:1  
为进一步提高镇泾油田低渗透油藏原油采收率,利用室内驱油物理模拟技术,开展了水驱转空气泡沫驱提高采收率实验研究,探讨了空气泡沫驱对低渗透油藏水驱开发效果的影响。实验结果表明,在模拟地层条件下,初始水驱阶段的平均采收率为29.06%,水驱转空气泡沫驱后,采收率得到明显提高,增量均在10%以上;再次水驱后,最终采收率平均可达到45.42%。随着空气泡沫注入速度的增加,采收率呈上升趋势,但增幅逐渐减小。注入速度越大,气体突破时间越早,不过实验过程中并未发生明显的因气窜而导致采收率降低的现象;在相同条件下,空气泡沫注入总量为1倍孔隙体积时的采收率比0.6倍孔隙体积时的高5%。研究认为,通过交替注入起泡剂溶液与空气实现空气泡沫驱对于注水开发的低渗透油藏进一步提高原油采收率是可行的。  相似文献   

14.
水气交替注入(WAG)是两种传统采油方法的综合,是二次采油和三次采油中颇具潜力的一种方法。由于高粘度的水趋向于在高渗层形成屏蔽,而使气体进入油气藏基岩层或低渗层,提高了气体的驱扫效率。通过层状二维剖面模型的模拟研究,证明了在层状凝析气藏中水气交替注入的采收率比循环注气的采收率高,根据全组分模拟器模拟结果可知:水气比、不同的注入采塞、渗透率和残余气饱和度对凝析渍打收率的影响非常明显;崦注入次序、注入  相似文献   

15.
朝阳沟油田注采系统调整效果   总被引:4,自引:2,他引:2  
搞好油藏的注采系统调整,是高效开发低特低渗透油田的重要措施。朝阳沟油田是大庆长垣外围油田中开发规模最大的低特低渗透油田,根据油藏数值模拟、数理统计的预测,结合现场试验资料和生产成果,对朝阳沟油田不同类型储集层注水方式的调整方法、效果、时机和水驱控制程度界限值等问题进行研究。研究结果表明,天然裂缝较发育的储集层适于进行线性注水调整,储集层裂缝不发育及砂体零散分布、断层较多的区块适于进行不规则点状注水调整。进行注采系统调整,能够有效提高低特低渗透储集层的水驱控制程度,通过调整压力场变化,改变注水驱油的液流方向,提高了注入水波及体积和驱油效率。朝阳沟油田注采系统调整所取得的成果对其它低特低渗透油田的合理开发有参考价值。图6参2(陈志宏摘)  相似文献   

16.
以冀东油田柳北大倾角油藏为原型建立了剖面地质模型,在流体相态拟合基础上.应用数值模拟技术讨论了地层倾角、油层厚度、地层压力、注入速度、气水比等参数对倾斜油藏水气交替驱开发效果的影响。结果表明,倾角的存在可显著提高水气交替驱开发效果,模型中倾角15°时提高采收率比无倾角时大6.18%;对于倾斜油藏。油层厚度越大对水气交替驱越有利.而无倾角时,规律相反;通过控制注入速度,倾斜油藏水气交替驱在较低的适宜压力下也可获得较好的开发效果;此外注入速度、气水比等对倾斜油藏水气交替驱的影响与无倾角时规律不同且均存在最佳取值。  相似文献   

17.
特低渗透油藏的自身特征决定了其开发难度大于常规油藏,存在“注不进,采不出”等问题。注 CO2提高采收率技术应用于特低渗透油藏潜力巨大,如何改善其驱油效果是合理高效开发的关键。通过室内特低渗透 长岩心物理模拟实验,采用12种方案进行CO2驱油效果评价。研究表明,超前注气相对于同步注气可以提高采收率4.69%,驱油效果优于同步注气,其CO2气体突破早于同步注气。不同注气时机实验采收率与转CO2 驱油时产 出液含水率呈负对数关系,总压力梯度变化呈 M型,转注CO2驱油后存在滞后效应,采用小流量可以达到增产目 的。不同注气段塞实验采收率与总注入流体中CO2所占体积比例呈正相关关系。不同气水比和CO2 驱油实验CO2突破时间较为一致,水驱油和CO2驱油实验总压力梯度变化较为一致。应用于特低渗透油藏开发,提出超前 低速注气、气水交替和后期水驱策略,多种注采方案,进行分区试验。  相似文献   

18.
Immiscible water-alternating-gas (WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency. Nevertheless, considering the complicated phase behavior and various multiphase flow characteristics, gas tends to break through early in production wells in heterogeneous formations because of overriding, fingering, and channeling, which may result in unfavorable recovery performance. On the basis of phase behavior studies, minimum miscibility pressure measurements, and immiscible WAG coreflood experiments, the cubic B-spline model (CBM) was employed to describe the three-phase relative permeability curve. Using the Levenberg– Marquardt algorithm to adjust the vector of unknown model parameters of the CBM sequentially, optimization of production performance including pressure drop, water cut, and the cumulative gas–oil ratio was performed. A novel numerical inversion method was established for estimation of the water–oil–gas relative permeability curve during the immiscible WAG process. Based on the quantitative characterization of major recovery mechanisms, the proposed method was validated by interpreting coreflood data of the immiscible WAG experiment. The proposed method is reliable and can meet engineering requirements. It provides a basic calculation theory for implicit estimation of oil–water–gas relative permeability curve.  相似文献   

19.
东濮凹陷低渗油藏储量丰富,注水驱油开发效果欠佳,亟需新的驱油技术降本增效。在对低渗油藏卫42块开展油藏研究和模拟试验的基础上,优化设计气驱注采比和注气量,在卫42块实施气驱先导试验,对比分析了注CO2前后地层压力、CO2驱油效果和CO2泄漏监测情况。结果表明:低渗油藏卫42块注CO2驱油有较好的效果,地层压力回升,但是受储层裂缝影响发生气窜。该区块的气驱试验为东濮凹陷其他低渗油藏下步气驱开发提供重要的参考价值。  相似文献   

20.
低渗难采油气藏大多生产井、注水井措施效果差,根本原因在于储层间未建立起有效驱动体系,从而导致剩余油气采出程度低。基于注水开发过程中水力压裂水驱波及范围判别精度不足的实际,在精细油气藏地质建模的基础上,结合储层岩样岩石力学实验,对松辽盆地某油气田单井井筒周围0°~360°范围内可能产生的压裂缝开展定量化预测,提出一种水力压裂后理想情况下水驱波及范围计算的新方法和水驱D指数曲线的概念,对现有技术条件下压裂后水驱波及可达到的理想范围进行了预测。这将为注水开发中后期储层改造,提高剩余油气采出程度提供较为重要的科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号