首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper considers a delay‐dependent and parameter‐dependent robust stability criterion for stochastic time‐delay systems with polytopic uncertainties. The delay‐dependent robust stability criterion, as expressed in terms of linear matrix inequalities (LMIs), is obtained by using parameter‐dependent Lyapunov functions. It is shown that the result derived by a parameter‐dependent Lyapunov functional is less conservative. Numerical examples are provided to illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This paper deals with the problem of stability and robust control for both certain and uncertain continuous‐time singular systems with state delay. Systems with norm‐bounded parameter uncertainties are considered. Robust delay‐dependent stability criteria and linear memoryless state feedback controllers based on linear matrix inequality are obtained. By choosing some Lyapunov‐Krasovskii functionals, neither model transformation nor bounding for cross terms is required in the derivation of our delay‐dependent results. Finally, numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

3.
This paper is concerned with delay‐dependent stability for linear systems with time‐varying delays. By decomposing the delay interval into multiple equidistant subintervals, on which different Lyapunov functionals are chosen, and new Lyapunov‐Krasvskii functionals are then constructed. Employing these new Lyapunov‐Krasvskii functionals, some new delay‐dependent stability criteria are established. The numerical examples show that the obtained results are less conservative than some existing ones in the literature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The problem of robust absolute stability for time‐delay Lur'e systems with parametric uncertainties is investigated in this paper. The nonlinear part of the Lur'e system is assumed to be both time‐invariant and time‐varying. The structure of uncertainty is a general case that includes norm‐bounded uncertainty. Based on the Lyapunov–Krasovskii stability theory, some delay‐dependent sufficient conditions for the robust absolute stability of the Lur'e system will be derived and expressed in the form of linear matrix inequalities (LMIs). These conditions reduce the conservativeness in computing the upper bound of the maximum allowed delay in many cases. Numerical examples are given to show that the proposed stability criteria are less conservative than those reported in the established literatures.  相似文献   

5.
This article addresses the problem of finite‐time stability (FTS) and finite‐time contractive stability (FTCS) for switched nonlinear time‐delay systems (SNTDSs). By virtues of the Lyapunov‐Razumikhin method, Lyapunov functionals approach, and the comparison principle technique, we obtain some improved Razumikhin‐type theorems that verify FTS and FTCS property for SNTDSs. Moreover, our results allow the estimate of the upper bound of the derivatives for Lyapunov functions to be mode dependent functions which can be positive and negative. Meanwhile, the proposed results also improve the related existing results on the same topic by removing some restrictive conditions. Finally, two examples are presented to verify the effectiveness of our methods.  相似文献   

6.
This paper is concerned with the delay‐dependent stability and robust stability for uncertain systems with time‐varying delay. Through constructing an appropriate type of Lyapunov‐Krasovskii functional and proving its positive definiteness, using slack matrices and a convex combination condition, the delay‐dependent stability criteria, which are less conservative, are derived in terms of linear matrix inequalities. Numerical examples are also given to illustrate the improvement on the conservatism of the delay bound over some existing results. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

7.
This paper revisits the problem of delay‐dependent robust ? filtering design for a class of continuous‐time polytopic linear systems with a time‐varying state delay. Based on a newly developed parameter‐dependent Lyapunov–Krasovskii functional combined with Projection Lemma and an improved free‐weighting matrix technique for delay‐dependent criteria, a new sufficient condition for robust ? performance analysis is first derived and then the filter synthesis is developed by using a simple matrix inequality linearization technique. It is shown that the desired filters can be constructed by solving a set of linear matrix inequalities. Finally, two simulation examples are given to show the effectiveness and less conservatism of the proposed method in comparison with the existing approaches. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
By employing the information of the probability distribution of the time delay, this paper investigates the problem of robust stability for uncertain systems with time‐varying delay satisfying some probabilistic properties. Different from the common assumptions on the time delay in the existing literatures, it is assumed in this paper that the delay is random and its probability distribution is known a priori. In terms of the probability distribution of the delay, a new type of system model with stochastic parameter matrices is proposed. Based on the new system model, sufficient conditions for the exponential mean square stability of the original system are derived by using the Lyapunov functional method and the linear matrix inequality (LMI) technique. The derived criteria, which are expressed in terms of a set of LMIs, are delay‐distribution‐dependent, that is, the solvability of the criteria depends on not only the variation range of the delay but also the probability distribution of it. Finally, three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the problem of robust sampled‐data control for Itô stochastic Markovian jump systems (Itô SMJSs) with state delay is investigated. Using parameters‐dependent Lyapunov functionals and some stochastic equations, we give stochastic sufficient stability criteria for polytopic uncertain Itô SMJSs. As a corollary, stochastic sufficient stability criteria are given for nominal Itô SMJSs. For this two cases of Itô SMJSs, based on the obtained stochastic stability criteria, their time‐independent sampled‐data controllers are designed, respectively. Then, for designing a time‐dependent sampled‐data controller for Itô SMJSs, a parameters‐dependent time‐scheduled Lyapunov functional is developed. New stochastic sufficient stability criteria are obtained for polytopic uncertain Itô SMJSs and nominal Itô SMJSs. Furthermore, their time‐dependent sampled‐data controllers are designed, respectively. Lastly, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

10.
In this paper, we consider the stability analysis and control synthesis of finite‐time boundedness problems for linear parameter‐varying (LPV) systems subject to parameter‐varying time delays and external disturbances. First, the concepts of uniform finite‐time stability and uniform finite‐time boundedness are introduced to LPV systems. Then, sufficient conditions, which guarantee LPV systems with parameter‐varying time delays finite‐time bounded, are presented by using parameter‐dependent Lyapunov–Krasovskii functionals and free‐weight matrix technologies. Moreover, on the basis of the results on the uniform finite‐time boundedness, the parameter‐dependent state feedback controllers are designed to finite‐time stabilize LPV systems. Both analysis and synthesis conditions are delay‐dependent, and they are formulated in terms of linear matrix inequalities by using efficient interior‐point algorithms. Finally, results obtained in simulation demonstrate the effectiveness of the proposed approach. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, sufficient conditions are provided for the stability of switched retarded and neutral time‐delay systems with polytopic‐type uncertainties. It is assumed that the delay in the system dynamics is time‐varying and bounded. Parameter‐dependent Lyapunov functionals are employed to obtain criteria for the exponential stability of the system in the form of linear matrix inequality (LMI). Free‐weighting matrices are then provided to express the relationship between the system variables and the terms in the Leibniz–Newton formula. Numerical examples are presented to show the effectiveness of the results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, the problem of delay‐dependent stability for uncertain stochastic dynamic systems with time‐varying delay is considered. Based on the Lyapunov stability theory, improved delay‐dependent stability criteria for the system are established in terms of linear matrix inequalities. Three numerical examples are given to show the effectiveness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper concerns delay‐range‐dependent robust stability and stabilization for time‐delay system with linear fractional form uncertainty. The time delay is assumed to be a time‐varying continuous function belonging to a given range. On the basis of a novel Lyapunov–Krasovskii functional, which includes the information of the range, delay‐range‐dependent stability criteria are established in terms of linear matrix inequality. It is shown that the new criteria can provide less conservative results than some existing ones. Moreover, the stability criteria are also used to design the stabilizing state‐feedback controllers. Numerical examples are given to demonstrate the applicability of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A switched nonlinear system subject to disturbances is considered in this paper. The switching signal admits an average dwell time and a state feedback control depending on the system operating modes, detected with a maximum time delay, is applied to the system. In this framework, the input‐to‐state stability problem of the closed‐loop system is addressed. Based on some established existence conditions of mode‐dependent Lyapunov‐like functions, the values of the maximum time delay and the average dwell time that allow to achieve the input‐to‐state stability of the closed‐loop system are determined. In order to obtain more tractable results, the existence conditions of the mode‐dependent Lyapunov‐like functions are given in terms of sum‐of‐squares programming in the case of polynomial nonlinearities. In the linear case, they are expressed in terms of linear matrix inequalities and a procedure for the synthesis of the mode‐dependent controller is provided in this situation. The established theoretical results are illustrated through a control problem of a building ventilation system and a switched control problem of a vehicle suspension system.  相似文献   

15.
This paper studies the stability of linear systems with interval time‐varying delays. By constructing a new Lyapunov–Krasovskii functional, two delay‐derivative‐dependent stability criteria are formulated by incorporating with two different bounding techniques to estimate some integral terms appearing in the derivative of the Lyapunov–Krasovskii functional. The first stability criterion is derived by using a generalized integral inequality, and the second stability criterion is obtained by employing a reciprocally convex approach. When applying these two stability criteria to check the stability of a linear system with an interval time‐varying delay, it is shown through some numerical examples that the first stability criterion can provide a larger upper bound of the time‐varying delay than the second stability criterion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This study is concerned with the problem of robust delay‐probability‐distribution‐dependent stability of uncertain stochastic genetic regulatory networks with mixed time‐varying delays. The parameter uncertainties are modeled as having a structured linear fractional form. Besides, we consider that the derivatives of the discrete time delays have different upper bounds in various delay intervals. Moreover, less conservative conditions are obtained by choosing an augmented novel Lyapunov–Krasovskii functional and using the lower bound lemma together with the Jensen inequality lemma. Furthermore, the criteria can be applicable to both fast and slow time‐varying delays. Finally, numerical examples are presented to illustrate the effectiveness of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper studies the problem of stability analysis for continuous‐time systems with time‐varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration, and new delay‐dependent sufficient stability criteria are obtained in terms of linear matrix inequalities. The merits of the proposed results lie in their less conservatism, which are realized by choosing different Lyapunov matrices in the decomposed integral intervals and estimating the upper bound of some cross term more exactly. Numerical examples are given to illustrate the effectiveness and less conservatism of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
This paper describes a delay‐range‐dependent local state feedback controller synthesis approach providing estimation of the region of stability for nonlinear time‐delay systems under input saturation. By employing a Lyapunov–Krasovskii functional, properties of nonlinear functions, local sector condition and Jensen's inequality, a sufficient condition is derived for stabilization of nonlinear systems with interval delays varying within a range. Novel solutions to the delay‐range‐dependent and delay‐dependent stabilization problems for linear and nonlinear time‐delay systems, respectively, subject to input saturation are derived as specific scenarios of the proposed control strategy. Also, a delay‐rate‐independent condition for control of nonlinear systems in the presence of input saturation with unknown delay‐derivative bound information is established. And further, a robust state feedback controller synthesis scheme ensuring L2 gain reduction from disturbance to output is devised to address the problem of the stabilization of input‐constrained nonlinear time‐delay systems with varying interval lags. The proposed design conditions can be solved using linear matrix inequality tools in connection with conventional cone complementary linearization algorithms. Simulation results for an unstable nonlinear time‐delay network and a large‐scale chemical reactor under input saturation and varying interval time‐delays are analyzed to demonstrate the effectiveness of the proposed methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a new insight into the delay‐dependent stability for time‐delay systems. Because of the key observation that the positive definiteness of a chosen Lyapunov–Krasovskii functional does not necessarily require all the involved symmetric matrices in the Lyapunov–Krasovskii functional to be positive definite, an improved delay‐dependent asymptotic stability condition is presented in terms of a set of LMIs. This fact has been overlooked in the development of previous stability results. The importance of the present method is that a vast number of existing delay‐dependent results on analysis and synthesis of time‐delay systems derived by the Lyapunov–Krasovskii stability theorem can be improved by using this observation without introducing additional variables. The reduction of conservatism of the proposed result is both theoretically and numerically demonstrated. It is believed that the proposed method provides a new direction to improve delay‐dependent results on time‐delay systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This summary addresses the input‐to‐state stability (ISS) and integral ISS (iISS) problems of impulsive switched nonlinear time‐delay systems (ISNTDSs) under two asynchronous switching effects. In our investigated systems, impulsive instants and switching instants do not necessarily coincide with each other. Meanwhile, systems switching signals are not simultaneous with the corresponding controllers switching signals, which will induce instability seriously, and cause many difficulties and challenges. By utilizing methods of Lyapunov‐Krasovskii and Lyapunov‐Razumikhin, mode‐dependent average dwell time approach, and mode‐dependent average impulsive interval technique, some stability criteria are presented for ISNTDSs under two asynchronous switching effects. Our proposed results improve the related existing results on the same topic by removing some restrictive conditions and cover some existing results as special cases. Finally, some simulation examples are presented to illustrate the effectiveness and advantages of our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号