首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The problem of robust stability analysis for uncertain discrete singular time‐delay systems is investigated in this paper. By decomposing the nominal system into slow and fast subsystems, a linear matrix inequality (LMI) condition is proposed for a discrete singular time‐delay system to be regular, causal and stable. Based on this, an LMI criterion is obtained for robust stability of an uncertain discrete singular time‐delay system. Two numerical examples are provided to demonstrate the feasibility of the proposed approach.  相似文献   

2.
In this paper, the robust delay‐dependent H control for a class of uncertain systems with time‐varying delay is considered. An improved state feedback H control is proposed to minimize the H‐norm bound via the LMI optimization approach. Based on the proposed result, delay‐dependent criteria are obtained without using the model transformation technique or bounded inequalities on cross product terms. The linear matrix inequality (LMI) optimization approach is used to design the robust H state feedback control. Some numerical examples are given to illustrate the effectiveness of the approach.  相似文献   

3.
This paper investigates the problem of robust filtering for a class of uncertain nonlinear discrete‐time systems with multiple state delays. It is assumed that the parameter uncertainties appearing in all the system matrices reside in a polytope, and that the nonlinearities entering into both the state and measurement equations satisfy global Lipschitz conditions. Attention is focused on the design of robust full‐order and reduced‐order filters guaranteeing a prescribed noise attenuation level in an H∞ or l2l∞ sense with respect to all energy‐bounded noise disturbances for all admissible uncertainties and time delays. Both delay‐dependent and independent approaches are developed by using linear matrix inequality (LMI) techniques, which are applicable to systems either with or without a priori information on the size of delays.  相似文献   

4.
基于状态观测器的鲁棒故障诊断滤波器设计LMI方法   总被引:5,自引:1,他引:5  
研究受不确定性扰动影响情况下线性时不变连续时间系统的鲁棒故障诊断滤波器设 计问题.引入一种新的体现残差对于故障信号灵敏度和不确定性扰动鲁棒性的性能指标,从系 统的L2增益角度出发,将基于状态观测器的鲁棒故障诊断滤波器设计问题形成为H∞优化问 题.然后应用线性矩阵不等式技术,给出并证明了该设计问题的解存在条件和求解方法.并通过 简例说明了算法的有效性.  相似文献   

5.
6.
This paper presents several new robust stability conditions for linear discrete‐time systems with polytopic parameter uncertainties and time‐varying delay in the state. These stability criteria, derived by defining parameter‐dependent Lyapunov functions, are not only dependent on the maximum and minimum delay bounds, but also dependent on uncertain parameters in the sense that different Lyapunov functions are used for the entire uncertainty domain. It is established, theoretically, that these robust stability criteria for the nominal and constant‐delay case encompass some existing result as their special case. The delay‐dependent and parameter‐dependent nature of these results guarantees the proposed robust stability criteria to be potentially less conservative.  相似文献   

7.
In this paper, a new adaptive robust control scheme is developed for a class of uncertain dynamical systems with time‐varying state delay, unknown parameters and disturbances. By incorporating adaptive techniques into the robust control method, we propose a continuous adaptive robust controller which guarantees the uniform boundedness of the system and at the same time, the regulating error enters an arbitrarily designated zone in a finite time. The proposed controller is independent of the time‐delay, hence it is applicable to a class of dynamical systems with uncertain time delays. The paper includes simulation studies demonstrating the performance of the proposed control scheme.  相似文献   

8.
Optimal tracking control (OTC) for discrete time‐delay systems affected by persistent disturbances with quadratic performance indexes is considered. Optimal tracking controller is designed based on a sensitivity approximation approach. By introducing a sensitivity parameter, we transform the original OTC problem into a series of difference equations without time‐advance on time‐delay terms. The obtained OTC law consists of analytic feedback and feedforward terms, and a compensation term, which is the sum of the infinite series of adjoint vectors. The compensation term can be obtained with an iterated formula for the adjoint vectors. A simulation example shows that the approximation approach is effective in tracking the reference input and robust with respect to exogenous persistent disturbances.  相似文献   

9.
This paper deals with the problem of robust stability and robust stabilization for uncertain continuous singular systems with multiple time‐varying delays. The parametric uncertainty is assumed to be norm bounded. The purpose of the robust stability problem is to give conditions such that the uncertain singular system is regular, impulse free, and stable for all admissible uncertainties. The purpose of the robust stabilization problem is to design a feedback control law such that the resulting closed‐loop system is robustly stable. This problem is solved via generalized quadratic stability approach. A strict linear matrix inequality (LMI) design approach is developed. Finally, a numerical example is provided to demonstrate the application of the proposed method.  相似文献   

10.
This paper is concerned with the problem of robust H control for uncertain stochastic systems with Markovian jump parameters and time‐varying state delays. A linear matrix inequality approach is developed and state feedback controllers are designed, which guarantee mean square asymptotic stability of the closed‐loop system and a prescribed H performance level for all modes and admissible uncertainties. A numerical example is provided to demonstrate the application of the proposed method.  相似文献   

11.
In this paper, the perturbed continuous‐time large‐scale system with time delays is represented by an equivalent Takagi‐Sugeno type fuzzy model. First, two types of decentralized state feedback controllers are considered in this paper. Based on the Riccati‐type inequality, the Razumikhin theorem, and the delay‐dependent Lyapunov functional approach, some controller design approaches are proposed to stabilize the whole fuzzy time‐delay system asymptotically. In these design methods, both the delay‐independent and delay‐dependent stabilization criteria are derived. By Schur complement, these sufficient conditions can be easily transformed into the problem of LMI's. Moreover, the systems with all the time‐delays τlij (t) are the same for all rules (i.e., τlij (t) = τmij (t) = τij for all l =m); the authors also propose a simpler and less conservative stabilizing criteria. A numerical example is given to illustrate the control design and its effectiveness.  相似文献   

12.
具有纯滞后的系统是一类比较难于控制的系统,对于这类系统较为有效的解决方法是 Smith (?)估器。这种方法对于参考输入能够给出良好响应,但在其它性能上却有不少缺陷。首先,它不能很好的消除外加干扰的影响,甚至带来稳态偏差,其次,它的鲁棒性不强、对模型偏差很敏感。为了改善这些性能,近年来提出了一些改进方案,但这些工作均有一定局限性。本文提出一个新的改进方案,这个方案在综合前人工作的基础上,兼顾了系统的各个主要方面,因而具有较好的总体性能,并以电渣炉数据为例,证明它具有较优越的性能。  相似文献   

13.
This paper studies robust stability for a class of uncertain nonlinear stochastic time‐delay systems. In terms of a linear matrix inequality, an improved delay‐dependent condition guaranteeing that a stochastic delay system will be exponentially stable in the mean square is proposed. This condition is less conservative than existing ones in the literature and is demonstrated by means of an example.  相似文献   

14.
方华京 《自动化学报》2002,28(4):535-539
提出一种新的基于l1优化技术的鲁棒故障检测方法,并且用统一的形式归纳了已有的此类方法.最后通过仿真算例对它们进行了比较.  相似文献   

15.
Sliding mode control synthesis is developed for a class of uncertain time‐delay systems with nonlinear disturbances and unknown delay values whose unperturbed dynamics is linear. The synthesis is based on a new delay‐dependent stability criterion. The controller constructed proves to be robust against sufficiently small delay variations and external disturbances. An admissible upperbound such that the corresponding closedloop system remains globally asymptotically stable for each delay value less than this up‐perbound is derived. Performance issues of the controller are illustrated in a simulation study.  相似文献   

16.
This paper discusses a generalized quadratic stabilization problem for a class of discrete‐time singular systems with time‐delay and nonlinear perturbation (DSSDP), which the satisfies Lipschitz condition. By means of the S‐procedure approach, necessary and sufficient conditions are presented via a matrix inequality such that the control system is generalized quadratically stabilizable. An explicit expression of the static state feedback controllers is obtained via some free choices of parameters. It is shown in this paper that generalized quadratic stability also implies exponential stability for linear discrete‐time singular systems or more generally, DSSDP. In addition, this new approach for discrete singular systems (DSS) is developed in order to cast the problem as a convex optimization involving linear matrix inequalities (LMIs), such that the controller can stabilize the overall system. This approach provides generalized quadratic stabilization for uncertain DSS and also extends the existing robust stabilization results for non‐singular discrete systems with perturbation. The approach is illustrated here by means of numerical examples.  相似文献   

17.
A new design approach to delay‐dependent robust stabilization and robust H∞ control for a class of uncertain time‐delay systems is provided in this paper. The sufficient conditions for delay‐dependent robust stabilization and robust H∞ control are derived based on a new state transformation and given in terms of linear matrix inequalities (LMI). Numerical examples are presented to show that the proposed results can be less conservative and can be used to deal with not only small but also large delay systems.  相似文献   

18.
In this paper, a general control scheme for disturbance rejection is presented. It is an extension of the disturbance observer used in mechatronics, and made applicable to time‐delay processes. It is shown that the proposed control scheme can achieve better load response in general and reject periodic disturbance asymptotically in particular. Stability analysis and disturbance rejection performance are provided. Simulation results confirm that the proposed method yields superior load response compared to the classical feedback system.  相似文献   

19.
具有多个时变时滞的不确定系统的时滞相关稳定性   总被引:1,自引:0,他引:1  
研究了具有多个时变时滞的不确定系统的 稳定性问题, 利用Razumikhn定理与向量不等式的方法, 给出了不确定时滞系统稳定的充分 条件. 所得的条件与时滞相关, 在很大程度上降低了现有结果的保守性. 文末给出了一个应 用的算例, 并与已有的结果作了比较.  相似文献   

20.
This paper investigates the problems of robust H∞ control for uncertain continuous‐time systems with time‐varying, norm‐bounded uncertainties in all system matrices. Necessary and sufficient conditions for the above problems are proposed. All conditions are represented in the form of linear matrix inequalities (LMIs). The robust H∞ controller can be easily designed from the solutions of the LMI conditions. Unlike earlier works, the proposed method does not involve any parameter tuning. Thus the robust H∞ optimization control problem, which has not been discussed in earlier reports, can be dealt with using this newly proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号