首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— With the development of wide‐gamut display technology, the need is clear for understanding the required size and shape of color gamut from the viewers' perspective. To that end, experiments were conducted to explore color‐gamut requirements based on viewers' preferred level of chroma enhancement of standard‐gamut images. Chroma preferences were measured for multiple hues using single‐hue images, and a corresponding hue‐dependent preferred chroma enhancement was successfully applied to natural, multi‐hue images. The multi‐hue images showed overall success, though viewers indicated that reds could be decreased even further in colorfulness, and yellows could be increased, which may argue in favor of multi‐primary displays. Viewer preferences do vary within the population, primarily in overall chroma level, and the differences can be largely accounted for with a single parameter for chroma‐level adjustment that includes the preferred hue dependence. Image content dependencies were also found, but they remain too complex to model. The hue‐dependent chroma preference results can be applied to display design and color‐enhancement algorithms.  相似文献   

2.
There are claims that multi‐chromatic displays can achieve a wider color gamut by the use of additional highly saturated secondary color channels. However, there are other claims that these displays lose lightness and/or color saturation at brighter levels. These apparently divergent views have led to some controversy in the display industry and at standard setting organizations. This study examines the color gamut volume for a variety of simulated and measured multi‐chromatic (sometimes incorrectly referred to as “multi‐primary”) displays using combinations of white and/or secondary color channels, such as cyan, magenta, and yellow. Furthermore, a two‐dimensional gamut representation, referred to as “gamut rings,” is introduced to illustrate that the addition of nonprimary optical color channels to a trichromatic (RGB) display can result in a significant decrease in the chroma at higher lightness levels. The additional saturated color channels can increase the gamut volume only around their hues at darker levels. The results also confirm the validity of comparing the color light output and white light output for revealing the design trade‐offs between the high‐peak white and the color‐image brightness for multi‐chromatic displays.  相似文献   

3.
Abstract— Display primaries are optimized for the trade‐off between the total primary power and color gamut under the requirement that a target color gamut is enclosed by the color gamut of the display. LED displays and HDTV color gamut are taken as examples. Compared to the display using a set of typical commercial RGB LEDs, it was found that a total optical (electrical) power of 23.6% (15.6%) can be saved for the display using optimal RGB LEDs. Although the size of the display color gamut is sacrificed, the color gamut of the display using optimal RGB LEDs still encloses the HDTV color gamut. The combined effect of the LED luminous efficiency and white‐point condition on the determination of the optimal LED wavelengths and bandwidths is also studied.  相似文献   

4.
Abstract— OLED devices with an RGBW pixel format using an unpatterned white emitter have the potential to provide very good efficiency and color gamut while enabling lower‐cost and large‐format manufacturing. However, the white subpixel often has unacceptably large color shifts with viewing angle. Furthermore, for some architectures such as top‐emitting microcavity devices, it can even be difficult to produce a white subpixel with good on‐axis color. In this paper, we describe the use of a white subpixel made up of a combination of differently tuned microelements and demonstrate how such an approach can overcome these problems. By carefully tuning the color and areas of each of the microelements in the white subpixel, we can trade off between better on‐axis color, less color change with angle, and higher efficiency. Furthermore, it was demonstrated that an RGBW top‐emitter microcavity device with a microelement white subpixel can achieve an increase in both power efficiency and color gamut relative to a conventional RGBW bottom‐emitter non‐microcavity device.  相似文献   

5.
This paper proposes a new approach for color transfer between two images. Our method is unique in its consideration of the scene illumination and the constraint that the mapped image must be within the color gamut of the target image. Specifically, our approach first performs a white‐balance step on both images to remove color casts caused by different illuminations in the source and target image. We then align each image to share the same ‘white axis’ and perform a gradient preserving histogram matching technique along this axis to match the tone distribution between the two images. We show that this illuminant‐aware strategy gives a better result than directly working with the original source and target image's luminance channel as done by many previous methods. Afterwards, our method performs a full gamut‐based mapping technique rather than processing each channel separately. This guarantees that the colors of our transferred image lie within the target gamut. Our experimental results show that this combined illuminant‐aware and gamut‐based strategy produces more compelling results than previous methods. We detail our approach and demonstrate its effectiveness on a number of examples.  相似文献   

6.
Abstract— To improve the image quality of a mobile display, the balance between color‐gamut size and luminance was studied in two subjective experiments. The first experiment was performed during the Asian Society for Information Display (ASID) conference in Nanjing, February 2004. Nearly 600 participants ranked the quality of images displayed for fixed combinations of color‐gamut size and display luminance on small color supertwisted nematic (CSTN) and thin‐film transistor (TFT) twistednematic (TN) displays. In the second experiment, a broader range of color‐gamut sizes and luminance levels were simulated on a cathode‐ray tube (CRT) display, and 20 participants were asked to score perceived image quality. The results of these experiments were used to model image quality as a function of color‐gamut size and display luminance for images differing in the level of chromaticity of their content. This model can be used to estimate the increase in luminance required to compensate for a reduction in color‐gamut size.  相似文献   

7.
The color gamut is one of the critical parameters that dictate the image quality of displays. The liquid crystal displays using white color light‐emitting diodes (LEDs) as the backlight, though having been widely employed recently, are not very satisfactory in terms of their color gamut because of the broad spectrum inherent to white LEDs. This prompted the authors to develop improved liquid crystal displays using an edge‐lit wide color gamut backlight that used red laser diodes and cyan LEDs. Generating laser beams with high color purity, the laser diodes are light sources with a significant effect on expanding the color gamut. However, laser diodes, red ones in particular, have unfavorable thermal characteristics. To cope with this shortcoming, the authors clearly defined the restrictive criteria for laying out two kinds of light source on the edge‐lit backlight and made a prototype 55‐type laser backlight for performance evaluation.  相似文献   

8.
Abstract— We have developed the world's largest TFT‐LCD, which has a 55‐in.‐diagonal size. This LCD features a 1920 × 1080 (16:9) resolution for full‐HDTV images, 500‐nit luminance, 72% color gamut, and 12‐msec response time at all gray levels. The size of the panel (55 in.) was determined by the maximum efficiency of our fifth‐generation line (glass size: 1100 × 1250 mm). To overcome the limitation of size in photolithography equipment, a new stitcking‐free technology was applied in both the TFT and color‐filter side. And the super‐IPS mode was used as a wide‐viewing‐angle technology because it is suitable in the fabrication of large panels. In this paper, we present issues on both the fabrication and characteristics of the 55‐in. TFT‐LCD.  相似文献   

9.
The inherent advantages of reflective e‐paper displays (EPD) – wide viewing direction range and excellent readability even under bright sunlight – can be extended into low‐light conditions by the addition of an integrated lighting unit (ILU) such as a front light. A methodology for predicting the viewing direction dependence of ambient contrast and color from display measurements and illumination models is here applied to reflective EPD where the ILU is switched on. The predictions can be used to optimize task lighting. The ILU improves the indoor performance of EPD without compromising their superior daylight performance.  相似文献   

10.
Abstract— Two optical structures used for a bottom‐emitting white organic light‐emitting diode (OLED) is reported. An RGBW color system was employed because of its high efficiency. For red, green, and blue (RGB) subpixels, the cavity resonance was enhanced by the use of a dielectric mirror, and for the white (W) subpixel, the mirror was removed. The optical length of the cavities was controlled by two different ways: by the thickness of the dielectric filter on top of the mirror or by the angle of oblique emission. With both methods, active‐matrix OLEDs (AMOLEDs) that reproduced a color gamut exceeding 100% of the NTSC (National Television System Committee) standard were fabricated. More importantly, the transmission of a white OLED through R/G/B color filters was significantly higher (up to 50%) than that of a conventional structure not employing a mirror, while at the same time as the color gamut increased from ~75 to ~100% NTSC.  相似文献   

11.
Abstract— The effect of varying the color gamut of an extended‐gamut LCD on color appearance and preference was measured psychometrically in two experiments at each of two separate laboratories over a representative set of 10 images each. The first experiment measured the effect of color gamut on appearance, and the effect on the appearance attribute colorfulness was shown to be relatively strong compared with other attributes as the volume of display color gamut is varied. Overall, colorfulness monotonically increased at constant sensitivity as the gamut area in xy chromaticities increased while tending to become less and less sensitive to increasing the gamut volumes in CIELAB and CIECAM02. In the second experiment, the overall preference indicated an optimal color gamut for the display gamut volume even though the results were shown to be highly scene dependent.  相似文献   

12.
The sharp β‐sialon (Si6‐zAlzOzN8‐z : 0 < z < 0.1):Eu green phosphor, combining with a blue LED and CaAlSiN3:Eu red phosphor, is suitable for the wide‐color gamut white LEDs backlighting system, because of its sharp and asymmetric emission spectrum shape. However, the color gamut and the brightness of the aforementioned display is restricted because of the wide emission band of the CaAlSiN3:Eu red phosphor. In this work, we used K2SiF6:Mn as an alternate red phosphor, which has a sharp emission spectrum. The display with the white LED using sharp β‐sialon:Eu and K2SiF6:Mn shows a wide‐color gamut, which covers the hole NTSC triangle. The use of K2SiF6:Mn enables to realize not only a wider color gamut but also a higher brightness of displays, compared with the use of CaAlSiN3:Eu. Furthermore, it is confirmed that the white LED using sharp β‐sialon:Eu and K2SiF6:Mn is stable against temperature and also durable under the accelerated drive conditions.  相似文献   

13.
Abstract— A full‐color AMOLED display with an RGBW color filter pattern has been fabricated. Displays with this format require about one‐half the power of analogous RGB displays. RGBW and RGB 2.16‐in.‐diagonal displays with average power consumptions of 180 and 340 mW, respectively, were characterized for a set of standard digital still camera images at a luminance of 100 cd/m2. In both cases, a white‐emitting AMOLED was used as the light source, and standard LCD filters were used to provide the R, G, and B emission. The color gamuts of these displays were identical and the higher overall efficiency of the RGBW format results from two factors. First, a large fraction of a typical image is near neutral in color and can be reproduced using the white sub‐pixel. Second, the white sub‐pixel in an RGBW AMOLED display is highly efficient because of the absence of any color filter. The efficiency of these displays can be further enhanced by choosing a white emitter optimized to the target display white point (in this case D65). A two‐emission layer configuration based upon separate yellow and blue‐emitting regions is shown to be well suited for both the RGBW and RGB formats.  相似文献   

14.
This paper proposes a wide gamut LCD using locally dimmable four‐primary‐color (4PC) LED backlight. Although the color gamut of LCDs has been improved in recent years, it is insufficient to reproduce all the colors in the real world. The objective of this paper is to propose a wide gamut LCD that reproduces all the colors in the real world while keeping the cost increases to a minimum. We evaluated the color gamut reproduced by LEDs of multiple primary colors and selected cyan as the optimal color to be added to the three primary colors to reproduce all the colors in the real world. Therefore, we designed an LED backlight consisting of an additional only‐cyan LED with three‐primary‐color LEDs and developed a prototype LCD with 4PC LED backlight. Furthermore, we developed a local dimming algorithm for the 4PC LED backlight. As a result, we confirmed that the prototype LCD with the 4PC LED backlight is able to cover almost all the colors in the real world and also able to display natural images with highly saturated colors by local dimming.  相似文献   

15.
Quantum dots (QDs) are increasingly the technology of choice for wide color gamut displays. Two popular options to incorporate QDs into displays include on‐edge and on‐surface solutions. The opto‐mechanical design for an on‐edge QD solution including a LED light bar (“on‐edge QD light bar”) is more complex than the design for a standard white phosphor LED light bar. In this paper, we identify and investigate a range of design parameters for an on‐edge QD light bar, and we show that these parameters have significant influence on system efficiency and color uniformity. The effects of varying these parameters are explored through the use of a custom adjustable testbed and optical raytracing methods. Our testbed data demonstrate the inherent trade‐offs between efficiency and color uniformity and provide guidance for the design of high‐performing displays. The optical raytracing data demonstrate a good predictive capability and support the use of optical modeling methods for a detailed exploration of a wider range of design parameters.  相似文献   

16.
Abstract— A method for selecting primaries of a wide‐gamut display is proposed, in which display color gamut is designed to match a target color gamut in CIELAB color space. A standard deviation of the relative maximum chroma of display and target color gamuts is defined. The selection method optimizes display primaries for the minimum standard deviation so that display and target color gamuts are similar in shape. It is shown that the color gamut of a laser display designed by this method is similar in shape to the theoretical maximum, or optimal, color gamut of objects. It is also shown that the color gamut of an LED display can be designed to include 99.7% of the gamut of Pointer's real‐world surface colors. LED primaries are selected to minimize the standard deviation of the relative maximum chroma of effective display color gamut and a target color gamut which is defined to include Pointer's real‐world surface colors. For both the laser and LED displays, it is necessary to constrain the red‐primary wavelength to avoid excessive optical power for the red primary.  相似文献   

17.
Abstract— A continuous‐viewing‐angle‐controllable liquid‐crystal display (LCD) using a blue‐phase liquid crystal is proposed. To realize both wide‐viewing‐angle (WVA) mode and narrow‐viewing‐angle (NVA) mode with a single liquid‐crystal panel, each pixel is divided into a main pixel and a subpixel. The main pixel is for displaying images in both modes. The subpixel is for displaying images in WVA mode and controlling the viewing angle in NVA mode. The device exhibits a good viewing‐angle‐controlling characteristic and high transmittance.  相似文献   

18.
Historically displays used three colorants in an additive system. During that time, the CIE chromaticity diagram adequately illustrated color capability. Modern displays are not constrained by this additive architecture, and the diagram can fail in its purpose. This is demonstrated by analysis and a large number of display measurements. A device‐independent methodology using CIE 1976 L*a*b* color gamut volume is described that provides a robust means to determine the size of the color gamut. This methodology is then extended to the ‘gamut rings’ diagram as a solution for visualizing color capability that directly correlates to color gamut volume. It is further shown how the methodology can be applied to determine the intersection between two gamut volume boundaries.  相似文献   

19.
Abstract— An adjustable‐color‐gamut dual‐gap RGBW transflective liquid‐crystal display that uses a four‐color manufacturing process and a color‐processing algorithm to achieve the appropriate color performance in both the transmissive and reflective modes is presented. Based on superior‐color‐transformation units, the total brightness and color gamut can be modified under different ambience. The highest NTSC color gamut in the reflective mode (reflectance, 4.4%) that has been fabricated successfully for a RGBW 1.5‐in. dual‐gap panel is 23% with a 7%, 17%, and 40% NTSC color gamut in the transmissive mode by using different algorithms. Compared to a typical RGB panel, it not only provides flexibility for any environment but also satisfies a variety of personal requirements. Based on personal preference, users have more choices to adjust the LCD settings such as color saturation, brightness, etc. The smart RGBW TRLCD will definitely become the developing trend towards sunlight‐readable LCDs in the near future.  相似文献   

20.
Display technology has undergone great progress over the last few years. From higher contrast to better temporal resolution or more accurate color reproduction, modern displays are capable of showing images which are much closer to reality. In addition to this trend, we have recently seen the resurrection of stereo technology, which in turn fostered further interest on automultiscopic displays. These advances share the common objective of improving the viewing experience by means of a better reconstruction of the plenoptic function along any of its dimensions. In addition, one usual strategy is to leverage known aspects of the human visual system (HVS) to provide apparent enhancements, beyond the physical limits of the display. In this survey, we analyze these advances, categorize them along the dimensions of the plenoptic function, and present the relevant aspects of human perception on which they rely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号