首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
Mesh‐based multicast routing protocols for mobile ad hoc networks (MANETs) build multiple paths from senders to receivers to deliver packets even in the presence of links breaking. This redundancy results in high reliability/robustness but may significantly increase packet overhead. This paper proposes a mesh‐based multicast protocol, called centered protocol for unified multicasting through announcements (CPUMA), that achieves comparable reliability as existing mesh‐based multicast protocols, however, with significantly much less data overhead. In CPUMA, a distributed core‐selection and maintenance algorithm is used to find the source‐centric center of a shared mesh. We leverage data packets to center the core of each multicast group shared mesh instead of using GPS or any pre‐assignment of cores to groups (the case of existing protocols). The proposed centering scheme allows reducing data packet overhead and creating forwarding paths toward the nearest mesh member instead of the core to reduce latency. We show, via simulations, that CPUMA outperforms existing multicast protocols in terms of data packet overhead, and latency while maintaining a constant or better packet delivery ratio, at the cost of a small increase in control overhead in a few scenarios. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Media acquisition process in wireless multicast requires that the sender obtains confirmation replies from a set of receivers. If replies are uncoordinated, the process can be much more time consuming than that of wireless unicast due to packet collisions. We propose a wireless multicast scheme that utilizes a novel concurrent Clear-To-Send (CTS) transmission method and a distributed multicast tree construction method. The concurrent CTS based MAC (Media Access Control) layer design can significantly reduce packet collisions and signaling overhead at the local cell level. Built on top of this new MAC layer protocol, we further propose a distributed multicast tree construction algorithm which grows the tree by maximizing the local multicast gain. The uniqueness of our algorithm is that the tree is constructed implicitly during the media access stage and the algorithm requires little additional message overhead. Extensive simulations are conducted to evaluate the performance of the proposed scheme. Our results indicate that the proposed scheme offers considerable improvement in multicast turnaround time and efficiency. The proposed scheme is also robust against network topology changes caused by node movements.  相似文献   

3.
We examine an approach for providing reliable, scalable multicast communication, involving the use of multiple multicast channels for reducing receiver processing costs and reducing network bandwidth consumption in a multicast session. In this approach a single multicast channel is used for the original transmission of packets. Retransmissions of packets are done on separate multicast channels, which receivers dynamically join and leave. We first show that protocols using an infinite number of multicast channels incur much less processing overhead at the receivers compared to protocols that use only a single multicast channel. This is due to the fact that receivers do not receive retransmissions of packets they have already received correctly. Next, we derive the number of unwanted redundant packets at a receiver due to using only a finite number of multicast channels, for a specific negative acknowledgment (NAK)-based protocol. We then explore the minimum number of multicast channels required to keep the cost of processing unwanted packets to a sufficiently low value. For an application consisting of a single sender transmitting reliably to many receivers we find that only a small number of multicast channels are required for a wide range of system parameters. In the case of an application where all participants simultaneously act as both senders and receivers a moderate number of multicast channels is needed. Finally, we present two mechanisms for implementing multiple multicast channels, one using multiple IP multicast groups and the other using additional router support for selective packet forwarding. We discuss the impact of both mechanisms on performance in terms of end-host and network resources  相似文献   

4.
Compared with unicast, multicast over wireless ad‐hoc networks do not support reliability due to their inability to exchange request‐to‐send/clear‐to‐send (RTS/CTS) and ACK packets with multiple recipients. Although several media access control (MAC) layer protocols have been proposed to provide reliable multicast, these introduce additional overhead, which degrades system performance. A novel MAC protocol for reliable wireless multicast is proposed in this paper. By adapting orthogonal frequency division multiple access characteristics in CTS and ACK packets, the protocol achieves reliability over wireless multicast with minimized overhead.  相似文献   

5.
A new video transport protocol for multicast agents in wireless mesh networks (WMNs) is proposed in this paper. The proposed protocol enables a significant reduction in the transmission overhead, while providing reliable communication for its use in multicast applications. This proposed reliable protocol provides a practical approach for an overlay peer‐to‐peer multicast facility supported within the application layer. This obviates the need to give upgraded routers capable of handling multicast broadcasting or modify the existing protocol stack. The protocol tolerates partial losses in multimedia transmissions, while supporting control of the delay sensitivity of such transmissions in WMNs. The key issue in this protocol is the ability to detect packet loss, anticipate retransmission requests, and use the anticipated retransmission requests to transmit the lost packets prior to requests from other receiving agents. The proposed protocol allows for the receiver to determine if retransmission of lost packets is required, ensuring the greatest flexibility needed for a reliable multicast protocol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Multireceiver identity (ID) based encryption and ID‐based broadcast encryption allow a sender to use the public identities of multiple receivers to encrypt messages so that only the selected receivers or a privileged set of users can decrypt the messages. It can be used for many practical applications such as digital content distribution, pay‐per‐view and multicast communication. For protecting the privacy of receivers or providing receiver anonymity, several privacy‐preserving (or anonymous) multireceiver ID‐based encryption and ID‐based broadcast encryption schemes were recently proposed, in which receiver anonymity means that nobody (including any selected receiver), except the sender, knows who the other selected receivers are. However, security incompleteness or flaws were found in these schemes. In this paper, we propose a new privacy‐preserving multireceiver ID‐based encryption scheme with provable security. We formally prove that the proposed scheme is semantically secure for confidentiality and receiver anonymity. Compared with the previously proposed anonymous multireceiver ID‐based encryption and ID‐based broadcast encryption schemes, the proposed scheme has better performance and robust security. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
ICAM: integrated cellular and ad hoc multicast   总被引:2,自引:0,他引:2  
In third generation (3G) wireless data networks, multicast throughput decreases with the increase in multicast group size, since a conservative strategy for the base station is to use the lowest data rate of all the receivers so that the receiver with the worst downlink channel condition can decode the transmission correctly. This paper proposes ICAM, integrated cellular and ad hoc multicast, to increase 3G multicast throughput through opportunistic use of ad hoc relays. In ICAM, a 3G base station delivers packets to proxy mobile devices with better 3G channel quality. The proxy then forwards the packets to the receivers through an IEEE 802.11-based ad hoc network. In this paper, we first propose a localized greedy algorithm that discovers for each multicast receiver the proxy with the highest 3G downlink channel rate. We discover that due to capacity limitations and interference of the ad hoc relay network, maximizing the 3G downlink data rate of each multicast receiver's proxy does not lead to maximum throughput for the multicast group. We then show that the optimal ICAM problem is NP-hard, and derive a polynomial-time 4-approximation algorithm for the construction of the multicast forest. This bound holds when the underlying wireless MAC supports broadcast or unicast, single rate or multiple rates (4(1 + /spl isin/) approximation scheme for the latter), and even when there are multiple simultaneous multicast sessions. Through both analysis and simulations, we show that our algorithms achieve throughput gains up to 840 percent for 3G downlink multicast with modest overhead on the 3G uplink.  相似文献   

8.
The opportunistic routing mechanism can use several lossy broadcast links to support reliable transmission. In this paper, a simple opportunistic routing mechanism for real‐time multimedia services is proposed. This mechanism is based on the dynamic source routing protocol with some modifications, multiple route request, and route reply messages are used to construct the forwarder list, and the nodes within the forwarder list forward the packets which they overhear. The forwarder list is placed on the packet header in the form of a Bloom filter, which will restrict the size of the forwarder list to a constant value. There are no strict scheduling mechanisms for the forwarding order of the forwarder nodes, thus our opportunistic routing mechanism can be scalable for multiple simultaneous flows. Simulations show that our mechanism can effectively decrease the transmission times and the amount of the control messages for each packet and reduce the end‐to‐end delay for real‐time voice service, the quality of service for these services can be supported well over the unstable wireless channel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Multicasting has been extensively studied for mobile ad hoc networks (MANETs) because it is fundamental to many ad hoc network applications requiring close collaboration of multiple nodes in a group. A general approach is to construct an overlay structure such as multicast tree or mesh and to deliver a multicast packet to multiple receivers over the overlay structure. However, it either incurs a lot of overhead (multicast mesh) or performs poorly in terms of delivery ratio (multicast tree). This paper proposes an adaptive multicast scheme, called tree-based mesh with k-hop redundant paths (TBM k ), which constructs a multicast tree and adds some additional links/nodes to the multicast structure as needed to support redundancy. It is designed to make a prudent tradeoff between the overhead and the delivery efficiency by adaptively controlling the path redundancy depending on network traffic and mobility. In other words, when the network is unstable with high traffic and high mobility, a large k is chosen to provide more robust delivery of multicast packets. On the other hand, when the network traffic and the mobility are low, a small k is chosen to reduce the overhead. It is observed via simulation that TBM k improves the packet delivery ratio as much as 35% compared to the multicast tree approach. On the other hand, it reduces control overhead by 23–87% depending on the value of k compared to the multicast mesh approach. In general, TBM k with the small value of k offers more robust delivery mechanism but demands less overhead than multicast trees and multicast meshes, respectively.  相似文献   

10.
The design of a medium access control scheme for a single-hop, wavelength-division-multiplexing-(WDM) multichannel local lightwave network poses two major difficulties: relatively large transmitter/receiver tuning overhead and large ratio of propagation delay to packet transmission time. Most schemes proposed so far have ignored the tuning overhead, and they can only schedule fixed-length packet transmissions. To overcome these two difficulties, the authors propose several scheduling algorithms which can reduce the negative impact of tuning overhead and schedule variable-length messages. A separate channel (control channel) is employed for transmission of control packets, and a distributed scheduling algorithm is invoked at each node every time it receives a control packet. By allowing the length of messages to be variable, a long message can be scheduled with a single control packet transmission, instead of fragmenting it into many fixed-length packets, thereby significantly reducing the overhead of control packet transmissions and improving the overall system performance. Three novel scheduling algorithms are proposed, varying in the amount of global information and processing time they need. Two approximate analytical models are formulated to study the effect of tuning time and the effect of having a limited number of data channels. Extensive simulations are conducted. Average message delays are compared for all of the algorithms  相似文献   

11.
Transmission algorithms are introduced for use in a single-hop packet switching system with nonuniform traffic and with propagation delay that Is large relative to the packet transmission time. The traffic model allows arbitrary traffic streams subject only to a constraint on the number of data packets which can arrive at any individual source in the system or for any individual destination in the system over time periods of specified length. The algorithms are based primarily on sending transmission schedules to the receivers immediately before transmitting each data packet multiple times so that the receiver can maximize the number of packets it captures. An algorithm based on matchings in a random graph is shown to provide mean total delay divided by mean propagation delay arbitrarily close to one, as the propagation delay tends to infinity  相似文献   

12.
Scalable Multicasting: The Core-Assisted Mesh Protocol   总被引:2,自引:0,他引:2  
Most of the multicast routing protocols for ad hoc networks today are based on shared or source-based trees; however, keeping a routing tree connected for the purpose of data forwarding may lead to a substantial network overhead. A different approach to multicast routing consists of building a shared mesh for each multicast group. In multicast meshes, data packets can be accepted from any router, as opposed to trees where data packets are only accepted from routers with whom a tree branch has been established. The difference among multicast routing protocols based on meshes is in the method used to build these structures. Some mesh-based protocols require the flooding of sender or receiver announcements over the whole network. This paper presents the Core-Assisted Mesh Protocol, which uses meshes for data forwarding, and avoids flooding by generalizing the notion of core-based trees introduced for internet multicasting. Group members form the mesh of a group by sending join requests to a set of cores. Simulation experiments show that meshes can be used effectively as multicast routing structures without the need for flooding control packets.  相似文献   

13.
This paper proposes a multicast routing algorithm that makes use of multiple node‐disjoint distribution trees for its routing from the source to the multicast group members. The specialty of this scheme is that the different packets of a message between a source and destinations are routed through node‐disjoint paths to provide reliable and secure multicast communication. In this proposed routing scheme the computation of the node‐disjoint path for packet routing is done either at a centralized route moderator or in a distributed fashion at all destinations in order to avoid single point failure. An effective provision is made to enable new members to join the existing multicast trees and to prune leaving members. The performance parameters of the proposed reliable and secure multi‐path routing scheme are studied under various network conditions using GloMoSim. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
In the study of routing in opportunistic networks, we find that there are some redundant overhead when the existing epidemic‐based routing algorithms exchange summary vectors (SVs) and request vectors (RVs), and store SVs. To address this issue, we propose an efficient low‐delay routing algorithm, epidemic routing based on adaptive compression of vectors (ERACV). Our proposed algorithm adaptively shortens the length of SVs and RVs by compressing the same bit sequences, optimizes the mechanism of exchanging SVs and RVs, and improves the order of transmitting data packets. Theoretical analysis verifies the effectiveness of ERACV in decreasing redundant overhead and packet delay. Simulation results show that ERACV reduces SVs’ storage and control overheads by at least 18.0% and 35.8%, respectively, as well as decreases the average end‐to‐end delay of data packets by more than 2.5%, as compared with epidemic routing algorithm and message transmission control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Mobile ad hoc networks are recognized by their abilities to form, sustain, and deform networks on‐the‐fly without the need for any pre‐established and fixed infrastructures. This wireless multi‐hop technology requires adaptive networking protocols with low control overhead and low power consumption to operate efficiently. Existing research so far are mainly concerned with unicast routing for ad hoc mobile networks. There is a growing interest in supporting multicast communication in an ad hoc mobile environment. In this paper, the associativity‐based ad hoc multicast (ABAM) routing protocol is proposed. The concept of association stability is utilized during multicast tree discovery, selection, and reconfiguration. This allows routes that are long‐lived to be selected, thereby reducing the frequency of route reconstructions. ABAM employs a localized route reconstruction strategy in response to migrations by source, receiver, and tree nodes. It can repair an affected subtree via a single route reconstruction operation. ABAM is robust since the repair can be triggered by a node in the tree or by the migrated node itself. ABAM is also capable of handling multicast group dynamics when mobile hosts decide to join and leave an existing multicast group. Our simulation results reveal that under different mobility scenarios and multicast group size, ABAM has low communication overhead and yields better throughput performance. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
The predominant use of today's networks is content access and distribution. Network Coding (NC) is an innovative technique that has potential to improve the efficiency of multicast content distribution over multihop Wireless Mesh Networks (WMNs) by allowing intermediate Forwarding Nodes (FNs) to encode and then forward data packets. Practical protocols are needed to realize the benefits of the NC technique. However, the existing NC-based multicast protocols cannot accurately determine the minimum number of coded packets that a FN should send in order to ensure successful data delivery to the destinations, so that many redundant packets are injected into the network, leading to performance degradation. In this paper, we propose HopCaster, a novel reliable multicast protocol that incorporates network coding with hop-by-hop transport. HopCaster completely eliminates the need for estimating the number of coded packets to be transmitted by a FN, and avoids redundant packet transmissions. It also effectively addresses the challenges of heterogeneous multicast receivers. Moreover, a cross-layer multicast rate adaptation mechanism is proposed, which enables HopCaster to optimize multicast throughput by dynamically adjusting wireless transmission rate based on the changes in the receiver population and channel conditions during the course of multicasting a coded data chunk. Our evaluations show that HopCaster significantly outperforms the existing NC-based multicast protocols.  相似文献   

17.
网络编码由于其传输效率高的特性,近年来在无线多播网络中得到广泛的应用。针对无线多播网络中丢包自动重传效率低的问题,该文提出一种新的基于虚拟队列中数据包到达时间的编码调度策略(CSAT)。在CSAT策略中,为了提高编码效率,采用虚拟队列来存放初始以及未被所有接收者接收到的数据包。考虑到队列的稳定性,CSAT策略按照一定的比率从主次队列选择发送;在次队列发送数据包时,结合了编码和非编码两种方式,根据数据包到达队列的先后,选取能够使较多数据包参与编码的方式发送。仿真结果表明,该文所提的CSAT编码调度策略在有效提高了数据包传输效率的同时,提高了网络的吞吐量并降低了平均等待时延。  相似文献   

18.
In this paper, we present the Enhanced Communication Transport Protocol–Part 5 (ECTP‐5), which provides scalable and reliable multicast communication service for many‐to‐many applications by constructing high quality recovery trees from two‐layer logical trees and repairing the losses via unicast automatic repeat request–based error control. In order to realize the protocol, we developed feasible protocol architectures and building blocks including additional functions which deal with engineering details, such as membership dynamics and sender coordination. Experimental results show that ECTP‐5 scales well with various session sizes and packet loss rates in terms of control overhead and recovery latency.  相似文献   

19.
Tailored for wireless local area networks, the present paper proposes a cross‐layer resource allocation scheme for multiple‐input multiple‐output orthogonal frequency‐division multiplexing systems. Our cross‐layer resource allocation scheme consists of three stages. Firstly, the condition of sharing the subchannel by more than one user is studied. Secondly, the subchannel allocation policy which depends on the data packets’ lengths and the admissible combination of users per subchannel is proposed. Finally, the bits and corresponding power are allocated to users based on a greedy algorithm and the data packets’ lengths. The analysis and simulation results demonstrate that our proposed scheme not only achieves significant improvement in system throughput and average packet delay compared with conventional schemes but also has low computational complexity.  相似文献   

20.
This paper addresses the problem of streaming packetized media data in a combined wireline/802.11 network. Since the wireless channel is normally the bottleneck for media streaming in such a network, we propose that wireless fountain coding (WFC) be used over the wireless downlink in order to efficiently utilize the wireless bandwidth and exploit the broadcast nature of the channel. Forward error correction (FEC) is also used to combat errors at the application‐layer. We analytically obtain the moment generating function (MGF) for the wireless link‐layer delay incurred by WFC. With the MGF, the expected value of this wireless link‐layer delay is found and used by the access point (AP), who has no knowledge of the buffer contents of wireless receivers, to make a coding‐based decision. We then derive the end‐to‐end packet loss/late probability based on the MGF. We develop an integrated ns‐3/EvalVid simulator to evaluate our proposed system and compare it with the traditional 802.11e scheme which is without WFC capability but equipped with application‐ and link‐layer retransmission mechanisms. Through extensive simulations of video streaming, we show that streaming with WFC is able to support more concurrent video flows compared to the traditional scheme. When the deadlines imposed on video packets are relatively stringent, streaming with WFC also shows superior performance in terms of packet loss/late probability, video distortion, and video frame delay, over the traditional scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号