首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract— In this paper, transflective liquid‐crystal‐display (LCD) technology will be reviewed, and several new single‐cell‐gap transflective LCD configurations are proposed. Photoalignment technology is studied especially for transflective‐LCD applications. In order to realize the optimal performance of the display as well as a matched transmittance/reflectance voltage curve (TVC/RVC) for the transflective configurations, two different single‐cell‐gap transflective‐LCD approaches will be discussed. The first one is the dual‐mode single‐cell‐gap approach, in which different liquid‐crystal modes are applied to the transmissive and reflective subpixels of the transflective LCD. The other approach is the single‐mode s ingle‐cell‐gap approach, in which an in‐cell retardation film is applied to adjust the performance and TVC/RVC matching of a transflective LCD. Photoalignment technology is used to fabricate the dual‐mode liquid‐crystal cell in the first approach and also the in‐cell retardation film in the second approach. Prototypes of the proposed configurations have been fabricated, which show good performance and a matched TVC/RVC.  相似文献   

2.
Abstract— We have developed a new technique for the production of thin crystal film (TCF) by deposition, molecular alignment, and the drying of water‐based lyotropic‐liquid‐crystal (LLC) materials. TCF exhibits high optical anisotropy and birefringence. This paper presents liquid‐crystal‐display (LCD) applications and opportunities for TCF plastic sheet polarizers, retarders, and color‐correction films as well as LCD designs with TCF internal polarizers.  相似文献   

3.
Abstract— Based on the drop‐on‐demand characteristics of ink‐jet printing, the multi‐domain alignment liquid‐crystal display (LCD) could be achieved by using patterned polyimide materials. These polyimide ink locations with different alignment procedures could be defined in a single pixel, depending on the designer 's setting. In this paper, we combined the electro‐optical design, polyimide ink formulation, and ink‐jetting technology to demonstrate the application of multi‐domain alignment liquid‐crystal display manufactory. The first one was a multi‐domain vertical‐alignment LCD. After the horizontal alignment material pattern on the vertical alignment film, the viewing angle would reach 150° without compensation film. The second one was a single‐cell‐gap transflective LCD within integrating the horizontal alignment in the transmissive region and hybrid alignment in the reflective one in the same pixel. In addition, this transflective LCD was also demonstrated in the form of a 2.4‐in. 170‐ppi prototype.  相似文献   

4.
Abstract— A new optical rewritable (ORW) liquid‐crystal‐alignment technology has been developed to create a display and to demonstrate its maturity and potential. ORW displays have no electrodes and use polarizers as substrates. The display requires no photolithography on plastic. Its simple construction secures durability and low cost for mass production. The on‐screen information is optically changed in a writing unit that consists of an LCD mask and an exposure source that is based on LEDs, low power, and low cost in comparison with Hg lamps or lasers. A high contrast image can be easily written, viewed, and rewritten through a polarizer, while the multi‐stable gray‐level image requires zero power to maintain the image. Reconfigurable LC alignment using ORW technology best suits plastic‐card displays as well as for LC photonics and various one‐mask processes of patterned LC‐alignment applications.  相似文献   

5.
Abstract— Three nonchiral‐smectic‐C (NSC) liquid‐crystal (LC) modes having fast‐response and wide‐viewing characteristics applicable for next‐generation LCDs are described. In the NSC LC modes, fast analog optical modulation is achieved by means of a coupling with an external electric field in a dielectrically driving scheme. The fast response results intrinsically from no interlayer interferences during molecular rotation in the layered structure of the NSC LC. Moreover, the self‐formation of two domains and the in‐plane variations of the optic axis produce the wide‐viewing properties. A step‐wise temperature annealing process is employed for a stable and well‐aligned smectic layer structure in a time‐efficient manner.  相似文献   

6.
Abstract— V‐shaped electro‐optical response is shown, both theoretically and experimentally, to be an inherent property of a deformed‐helix ferroelectric liquid‐crystal cell (DHFLC) under a special choice of the applied rectangular alternating‐electric‐field waveform, frequency, and cell geometry. In contrast to other known V‐shaped ferroelectric liquid‐crystal (FLC) modes, the discovered V‐shaped switching is observed in a broadband frequency range including 1 kHz, and not at a certain characteristic frequency. This type of V‐shaped switching allows for a drastic increase in the operating frequency of field‐sequential‐color (FSC) LCD cells in comparison with fast nematic liquid‐crystal (NLC) modes.  相似文献   

7.
A new technology which enables a local brightness control according to the displayed images has been expected in the thin and lightweight backlight systems to improve a contrast ratio and power consumption of the liquid crystal displays (LCDs). In this paper, we have proposed a novel local‐dimming backlight system using alignment‐controlled polymer‐dispersed liquid crystals as a light‐guiding plate and investigated the forming conditions of polymer‐dispersed liquid crystals to achieve both a high‐luminance ratio and a fast response speed. As a result, we found that a luminance ratio and response speed of the backlight system can be improved by using bifunctional LC monomer materials and forming fine and rigid polymer network in the LCs, and achieved high luminance ratio of 16:1 and fast response time less than 0.5 ms. In addition, we fabricated the twisted nematic‐mode LCD using the local dimming light‐guiding plate‐type backlight based on this design, and successfully realized eight times higher contrast ratio than that of the traditional twisted nematic‐mode LCD.  相似文献   

8.
Abstract— An autostereoscopic liquid‐crystal display (LCD) consists of two parallax barriers and an LCD including a liquid‐crystal panel, and a backlight panel is proposed. Parallax barrier 1 is located between the backlight panel and the liquid‐crystal panel, and Parallax barrier 2 is located between the liquid‐crystal panel and viewers. The operation principle of the autostereoscopic display and the calculation equations for the parallax barriers are described in detail. The autostereoscopic LCD was developed and produces high‐quality stereoscopic images without cross‐talk at the optimal viewing distance and less cross‐talk than a conventional one based on one parallax barrier at other viewing distances.  相似文献   

9.
Abstract— Through the realization of a blue‐phase‐mode (hereinafter, the operational mode of liquid crystal having a blue phase is referred to as a blue‐phase mode), a display using an improved field‐sequential method was confirmed to be capable of display at a frame rate of 180 fps (field frequency of 540 Hz) or higher. Under this condition, an image without annoyance caused by color breakup was obtained. Moreover, a novel field‐sequential AMLCD integrated with a scan driver by combining the liquid‐crystal‐display (LCD) technology using blue phase and oxide‐semiconductor technology has been developed.  相似文献   

10.
We have developed a novel super fast response (SFR) thin‐film transistor liquid crystal display (TFT‐LCD) with an extremely wide temperature range. Nematic liquid crystal molecules with positive dielectric anisotropy are vertically aligned initially. Any gray‐to‐gray response is forcibly controlled by applying an electric field. Response times of the SFR TFT‐LCD are over several times shorter than those of conventional LCDs such as vertical alignment or in‐plane switching LCDs.  相似文献   

11.
A transflective blue‐phase liquid crystal display (TRBP‐LCD) based on fringe in‐plane switching (FIS) electrodes is proposed. The proposed structure generates combined fringe and in‐plane electric fields that cause more liquid crystal (LC) molecules to reorient almost in plane above and between the pixel electrodes. The fringe field is mainly generated in the transmissive (T) region, and the horizontal electric field is mainly generated in the reflective (R) region. By optimizing the width of the pixel electrodes and the gap between two adjacent pixel electrodes, the different electric field intensity in the T and R regions contribute to balance the optical phase retardation between the T and R regions. As a result, the proposed TRBP‐LCD exhibits a low operating voltage and high optical efficiency, while it preserves a relatively simple fabrication process.  相似文献   

12.
Abstract— Optically compensated bend (OCB) mode is a promising technology for future high‐quality display devices due to its wide viewing angle without gray‐scale inversion and color shift, fast response time, high contrast ratio, and wide temperature range. This paper summarizes the developments of the OCB mode and the optical performance of OCB‐mode field‐sequential‐color LCD.  相似文献   

13.
We have developed a new conceptual liquid crystal display (LCD) with a memory circuit and a photosensor in each pixel to realize excellent handwriting performance. Direct writing and erasing a character in the LCD are available because their direct processing only in the pixel are performed without calculating coordinates by using a light pen and integrated pixel circuits. In addition, this LCD enables to display still image data stored in the pixel memory circuit at a low liquid crystal (LC) driving frequency of 1.0 Hz. In the result, we have achieved faster handwriting response time of 0.5 ms and lower power consumption of 0.7 mW in 7.0‐in. QVGA reflective LCD panel.  相似文献   

14.
Abstract— New thin‐film polarizers have been developed for use in optical applications. The polarization technology is based upon liquid‐crystalline material built from dichroic dyes that can be deposited on virtually any substrate. Theoretical calculations and experimental results on viewing‐angle characterization of conventional O‐type polarizers and new E‐type polarizers are presented. At large viewing angles, the E‐type polarizers demonstrate lower light leakage, higher contrast ratio, and higher efficiency. Spectral performance depends on the composition of the dye mixture that is used to produce the polarizer coating. The new polarizers exhibit enhanced viewing angle and more design flexibility, providing new opportunities for the liquid‐crystal‐display industry.  相似文献   

15.
Abstract— A dual‐cell‐gap transflective liquid‐crystal display (TR‐LCD) with identical response time in both the transmissive and reflective regions is demonstrated. In the transmissive region, strong anchoring energy is used to decrease the response time, while in the reflective region, weak anchoring energy is used to increase the response time. And overdrive voltage technology is adopted to make the response time identical in both the transmissive and reflective regions. The device structure and operating principle of the TR‐LCD was analyzed, the anchoring energy in the transmissive and reflective regions was designed, and the response time and electro‐optic characteristics of the TR‐LCD was calculated. The simulated dual‐cell‐gap TR‐LCD demonstrated good performances.  相似文献   

16.
Abstract— A novel display system, refered to as an LFD (liquid crystal with fine‐pitch light‐source display) is proposed. In an LFD, an auxiliary light source patterned with a fine pitch is attached to a reflective liquid‐crystal display (LCD), and a light shield is formed on the observer's side of the light source. A vertical‐alignment LCD (VA‐LCD) is attached as the reflective LCD, and an organic light‐emitting diode (OLED) is attached as the fine‐pitch light source. An LFD can produce bright, high‐contrast images under any ambient light. A test sample was built and its display characteristics confirmed.  相似文献   

17.
Abstract— A fast‐response and wide‐view liquid‐crystal display (LCD) using the crossed fringe‐field‐switching (CFFS) mode is proposed, where the fringe‐field electrodes exist on both the top and bottom substrates. The bottom fringe field is used to turn on the LC directors and the top fringe field is used to assist in the LC decay process. The decay time is reduced by ~2× compared to that of the conventional FFS mode between the full bright and dark states, and more than a 2× improvement is obtained for other gray‐scale transitions. This CFFS mode also preserves the wide‐view characteristics as the conventional FFS mode. Its applications to LCD TVs and monitors for reducing image blur are addressed.  相似文献   

18.
Abstract— As thin‐film‐transistor liquid‐crystal‐display (TFT‐LCD) panels become larger and provide higher resolution, the propagation delay of the row and column lines, the voltage modulation of Vcom, and the response time of the liquid crystal affect the display images now more than in the past. It is more important to understand the electrical characteristics of TFT‐LCD panels these days. There are several commercial products that simulate the electrical and optical performance of TFT‐LCDs. Most of the simulators are made for panel designers. However, this research is for circuit, system, and panel designers. It is made in a SPICE and Cadence environment as a commercial circuit‐design tool. For circuit and system designers, it will help to design the circuit around a new driving method. Also, it can be easily modified for every situation. It also gives panel designers design concepts. This paper describes the electrical model of a 15‐in. XGA (1024 × 768) TFT‐LCD panel. The parasitic resistance and capacitance of the panel are obtained by 3‐D simulation of a subpixel. The accuracy of these data is verified by the measured values of an actual panel. The developed panel simulation platform, the equivalent circuit of a 1 5‐in. XGA panel, is simulated by HSPICE. The results of simulation are compared with those of experiment, according to changing the width of the OE signal. The proposed simulation platform for modeling TFT‐LCD panels can be especially applied to large‐sized LCD TVs. It can help panel and circuit designers to verify their ideas without making actual panels and circuits.  相似文献   

19.
Abstract— Polymer stabilization is introduced in VA‐type LCDs, and fast response time can be achieved along with a high contrast ratio.1 A small amount of reactive monomer is mixed with liquid crystal and forms a polymer layer above the alignment layer by using a UV process. The pre‐tilt angle of the liquid crystal is stabilized, and a faster response time can be realized when the bias pre‐tilt angle from 90° is increased. The properties of reactive monomers and liquid crystal and the conditions of the UV process were studied. Based on the application of the proper monomer and LC, and an optima UV process, a 65‐in. 240‐Hz full‐HD TFT‐LCD, with a faster response time and high contrast ratio, has been developed.  相似文献   

20.
Abstract— A transflective polymer‐stabilized blue‐phase liquid‐crystal display (BP‐LCD) with a corrugated electrode structure is proposed. To balance the optical phase retardation between the transmissive (T) and reflective (R) regions, two device structures are proposed. The first device structure has the same inclination angles but different cell gaps in the T and R regions. And the second device structure has the same cell gap but different inclination angles in the T and R regions. Both of the device structures can obtain well‐matched VT and VR curves. This display exhibits low operating voltage, high optical efficiency, and a wide viewing angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号