共查询到16条相似文献,搜索用时 46 毫秒
1.
2.
3.
冷坩埚技术作为第四代玻璃固化工艺,已成为最有应用前景的玻璃固化技术。本文阐述了冷坩埚技术的原理及应用特点,概述了国际冷坩埚玻璃固化技术研发现状,并对其涉及的关键技术进行了分析,在此基础上提出了我国发展冷坩埚技术的设想。 相似文献
4.
<正>【法国《核综论》2010年第3期报道】2010年6月17日,阿海珐集团(Areva)在阿格(LaHague)厂举行了冷坩埚感应熔炉落成仪式,这项核废物玻璃固化创新技术是法国原子能与替代能源委员会(CEA)和阿海珐25年合作研究的成果。阿海珐在一份公报中表示,这项"高放废物玻璃固化技术世界第一"。 相似文献
5.
冷坩埚玻璃固化技术是高放废液玻璃固化技术的重点研究方向之一。坩埚底作为冷坩埚的重要部件,影响冷坩埚的透磁性、密封性、强度和漏料工艺。为提高冷坩埚漏料效率,需要增强漏料口附近的磁感应强度。本文使用COMSOL Multiphysics软件建立了冷坩埚电磁感应模型,研究了坩埚底结构设计对冷坩埚内部磁场和电磁损耗的影响。模拟结果显示:改变坩埚底部分瓣数对坩埚内部磁场、坩埚底部磁场和坩埚底电磁损耗的影响较小;增加开缝宽度可有效增强坩埚内部磁场,降低坩埚底的电磁损耗,并使玻璃熔体的加热效率增加约6%;增加开缝深度可增加坩埚底部中心附近玻璃域的磁感应强度和底部玻璃熔体的电磁损耗占比。 相似文献
6.
埚体结构的优化设计是冷坩埚固化减容技术研究课题的关键点之一。电磁冷坩埚技术的核心在于坩埚结构和电磁场的合理设计,以使其具有良好的透磁和低涡流损耗特性,在熔体中产生大的感应涡流,从而使冷坩埚的应用效果达到最佳。 相似文献
7.
8.
9.
冷坩埚感应熔炉工艺是核废物处理技术的第四代工艺技术。该工艺技术具有工作温度高、使用寿命长、处理的废物范围广、产生的二次废物少等优点。冷坩埚玻璃固化熔融装置主要由高频电源感应系统、机械系统(坩埚本体及附属结构)、尾气处理系统、冷却系统和仪表控制系统组成。其中,高频电源感应系统是该装置的重要组成部分之一,高频电源如不能提供合适的频率、功率及其它合理的运行参数,整个装置将不能正常的运行,熔体也无法得到很好处理。 相似文献
10.
为满足美国GA公司中心螺线管线圈模型CSM低温电性能测试的需要,基于ITER馈线系统的设计,对线圈终端盒壳体进行了修改设计。采用直立圆筒结构代替横卧立方体结构,优化了壳体安装工艺,提高了空间利用率。在此基础上,对线圈终端盒内部其他部件进行了相应的改进设计,最终实现了线圈终端盒的功能。利用大型有限元分析软件ANSYS对线圈终端盒壳体作弹性应力分析、屈曲分析及地震分析,并将屈曲分析结果与理论计算结果进行了对比。计算分析结果表明,直立圆筒结构形式的线圈终端盒设计合理可靠。 相似文献
11.
12.
中国原子能科学研究院已建立了一套冷坩埚玻璃固化原理实验装置,为检验设备设计的性能、各组成单元的匹配情况及生产的模拟固化体产品的性能,2015年进行了24 h的连续运行实验。实验中模拟高放废液和基础玻璃组成均以固体化学试剂形式预先混好后进料。连续运行实验结果表明,整个运行过程中整体装置性能参数稳定,熔制温度控制在(1 200±50) ℃,进料速率为6~10 kg/h,共卸料16次,每次启动卸料和停止卸料时间重复性好。对产生的玻璃固化体进行了主要性能测试,结果表明所测试固化体的性能满足我国行业标准的要求。 相似文献
13.
14.
KTX反场箍缩装置的主要参数介于RFX装置与MST装置之间。反场箍缩的外加纵场需跟随等离子体电流的演化而变化,同时由于RFP中的磁面对于外部特别是等离子体边界处的径向磁场较敏感,所以需外部线圈的磁场更加精细,这对于线圈的磁场分布、误差场以及波纹度等的设计提出了更高的要求。根据KTX物理目标参数要求,提出矩形和楔形截面纵场磁体线圈设计方案,借助有限元软件和程序分析了其电磁场空间分布和结构受力大小。结果表明,6.4°楔形截面方案相比矩形截面方案在控制误差场方面更具有可行性。 相似文献
15.
本文设计了在泳池式轻水反应堆(简称泳池堆)内在线测量电磁线圈电性能的可控温辐照装置。采用MCNP程序进行中子物理计算,对泳池堆、线圈骨架的结构尺寸与物质组分进行了精细全尺寸模拟,得出辐照装置的发热功率和中子注量率。通过初步估算,使用ANSYS CFX进行了数值模拟,得出辐照装置内线圈在堆运行时的温度,并提出温度控制的方法。辐照装置采用铝材加工制造,并进行了垂直度测试、气压测试、检漏测试。增加了绝缘设计,将辐照装置与泳池堆之间进行绝缘。在线圈处预埋铠装热电偶,对线圈温度进行实时监测。在泳池堆内对电磁线圈进行辐照试验,结果表明,本文设计的辐照装置能满足电磁线圈在泳池堆孔道内进行辐照试验的要求,并可对电磁线圈进行实时温度控制。 相似文献
16.
The HT-7U tokamak is a magnetically-confined full superconducting fusion device, consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF) coils. These coils are wound with cable-in-conductor (CICC) which is based on UNK NbTi wires made in Russian '. A single D-shaped toroidal field magnet coil will be tested for large and expensive magnets systems before assembling them in the toroidal configuration. This paper describes the layout of the instrumentation for a superconducting test facility based on the results of a finite element modeling of the single coil of toroidal magnetic field (TF) coils in HT-7U tokamak device. At the same time, the design of coil support structure in the test facility is particularly discussed in some detail. 相似文献