首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为使主动悬架能回收振动能量,建立了二自由度电磁式馈能悬架系统模型,设计了基于BP神经网络算法的PID控制器,对电路执行PI控制,以调节主动控制力的实际输出,以悬架的车身加速度、悬架动行程和轮胎动位移作为车辆动力学性能的评价指标,以自供能效率、馈能效率分别作为悬架能量利用与回收的评价指标,利用MATLAB/Simulink软件进行仿真分析。结果表明,通过PI控制电路输出的主动控制力的实际值与理想值基本一致;基于BP神经网络PID控制的馈能悬架在不同输入条件下均能有效改善车辆性能;并且该系统能回收部分悬架振动能量,其中自供能效率稳定在约55%,馈能效率稳定在约16%。  相似文献   

2.
悬架系统对所有车辆驾驶系统来说都是不可或缺的重要部分,它会直接影响车辆驾驶的稳定性和乘车人员的平稳舒适性。由于被动悬架无法随路面的变化而自动进行优化调整,因此基于二自由度1/4汽车主动悬架模型,通过MATLAB仿真实验,提出了使用基于RBF神经网络的PID控制器来控制主动悬架的策略。  相似文献   

3.
为改善汽车行驶平顺性,建立了简化的1/4车二自由度汽车主动悬架模型,提出了主动悬架自适应模糊PID控制方法。该方法中PID控制器以车身垂直速度的误差为控制参量,将车身垂直速度误差及误差变化率作为模糊控制器的输入变量,对PID控制器参数进行在线自调整。以C级路面白噪声随机信号为输入,利用MATLAB/Simulink对自适应模糊PID控制器进行了仿真,结果表明:自适应模糊PID在车身垂直速度、加速度及轮胎动载荷等控制方面明显优于被动悬架及传统PID控制,说明该法具有较好的控制效果和鲁棒性。  相似文献   

4.
根据某车型悬架参数,建立了1/4车主动悬架Matlab/Simulink模型,选择簧载质量加速度、悬架动挠度、轮胎动载荷作为控制目标量,采用模糊PID复合控制技术,针对该悬架模糊控制模型的设计及仿真。仿真结果表明:与被动控制、PID控制的悬架系统性能相比,该控制策略系统的簧载质量加速度和轮胎动载荷有了显著降低,有效改善了乘坐舒适性。  相似文献   

5.
为提高汽车行驶平顺性和乘坐舒适性,提出一种基于变论域理论的自适应模糊PID汽车主动悬架控制策略,将自适应模糊PID和变论域的在线调整整合在一起,采用变论域模糊控制实现控制系统输入输出论域的自整定,提高控制精度;采用自适应模糊PID控制,提高系统的动、静态特性,形成更优的悬架控制方法。研究结果表明,变论域自适应模糊PID控制主动悬架较传统模糊控制以及模糊PID控制的主动悬架能够更有效的克服路面冲击,减少汽车垂直方向的振动,进一步提高汽车行驶平顺性和乘坐舒适性。  相似文献   

6.
采用空气悬架的重型汽车能够明显改善车辆的平顺性和操纵稳定性,为研究重型汽车主动空气悬架的特性,建立了1/4主动空气悬架动力学模型,应用MATLAB Simulink平台,以车身垂直加速度、 悬架动行程、 轮胎动变形为指标,分别比较分析了被动空气悬架、 模糊自适应PID控制主动空气悬架性能.仿真结果表明:车身垂直加速度平...  相似文献   

7.
针对可调刚度和阻尼的主动悬架,建立1/4车辆悬架动力学模型.借鉴免疫原理,结合模糊控制规律,设计了一种模糊免疫PID控制器.应用Matlab/Simulink控制系统软件进行计算机仿真.仿真结果表明,具有模糊免疫PID控制器的主动悬架的控制结果明显优于常规的模糊PID控制,提高了车辆乘坐舒适性和操纵稳定性.  相似文献   

8.
针对车辆主动悬架模糊PID控制设计,提出了一种利用遗传算法整定模糊PID增益系数的方法。基于二自由度的1/4车辆模型,根据模糊控制原理和PID控制方法,设计了主动悬架的模糊PID控制器。利用具有全局寻优能力的遗传算法,以悬架二次型性能指标为目标函数,采用适应性比例法确定选择概率,整定了模糊PID的增益系数。优化结果表明,整定后的模糊PID控制主动悬架相对被动悬架综合性能良好,说明了提出的方法是有效的,对模糊PID控制设计具有重要的参考价值。  相似文献   

9.
自动驾驶智能汽车逐渐普及,其在通过城市路面的沟渠、井盖和减速带等特殊路面时,制动与减速时的稳定性与乘坐舒适性较差,为改善这一状况,对悬架的设计提出了更高的要求。为了提高自动驾驶智能汽车制动与减速时的稳定性,通过融合比例积分微分(Proportional Integral Derivative, PID)与模糊算法,设计了针对这些特殊路面的主动悬架模糊PID控制器,在Matlab/Simulink软件中搭建了半车主动悬架仿真模型,通过惯性测量单元(Inertial Measurement Unit, IMU)实车测量了沟渠路面的路面激励信息,并完成仿真试验。结果表明,当自动驾驶智能汽车在C级路面和沟渠路面行驶时,设计的主动悬架模糊PID控制器较单一算法的控制器更有效地降低了车身垂向加速度、车身俯仰角加速度、车轮动载荷和悬架动行程,改善了悬架性能。  相似文献   

10.
根据1/4车辆主动悬架模型,结合模糊控制理论和PID(比例-积分-微分)控制理论,建立了主动悬架的模糊PID联合控制器,并应用Matlab/Simulink进行了仿真分析.仿真结果表明,设计的模糊PID控制策略比单一模型的控制策略更能满足设计目标,车辆的舒适性得到了明显改善.  相似文献   

11.
针对配料作业生产过程中参数多、调节复杂等问题,设计了带有神经网络的PID控制器。该控制器在配料系统中的成功应用,可以消除生产过程中人为因素的影响,提高产品质量的均一性、稳定性。  相似文献   

12.
提出了一种基于神经网络自学习和并行处理的能力。利用模糊控制对未知模型不精确控制的功能来设计的PID控制算法,仿真实例表明能较好地实现PID控制器参数在线调整和优化。  相似文献   

13.
为了解决传统PID控制在智能车控制中响应迟滞,稳态误差和敏感性较大等问题。在传统PID控制的基础上,引入了BP神经网络。BP神经网络算法可以自动识别数学模型,可以自我学习和训练,自动整定加权系数,能够让控制参数自我调节。多次试验结果表明,该控制算法提高了控制的稳定性和快速响应性。  相似文献   

14.
针对汽车悬架这种复杂系统,建立了2自由度的汽车主动悬架数学模型,将模糊控制理论和PID控制策略经过有机结合后运用于主动悬架控制。用Matlab语言及其Simulink工具箱仿真,结果表明,设计的主动悬架与被动悬架比较,其舒适性得到了明显改善,验证了这种控制策略的可行性及有效性。  相似文献   

15.
利用Simulink软件建立车辆的四分之一主动悬架和路面的仿真模型,基于PID控制原理和模糊控制原理分别设计以车身垂向加速度为控制对象的PID控制器和模糊控制器,对主动悬架系统进行仿真。对比被动悬架系统、PID控制的主动悬架系统和模糊控制的主动悬架系统的仿真结果,结果表明PID控制和模糊控制的主动悬架系统都能明显改善车辆的行驶平顺性及乘坐舒适性,在控制效果上模糊控制优于PID控制。  相似文献   

16.
以设计的三级减振式主动悬架为研究对象,建立4自由度四分之一车三级减振式主动悬架动力学模型,以白噪声作为路面激励信号,建立路面模型。通过Matlab/Simulink软件建立三级减振式主动悬架的仿真模型。在C级路面下,基于PID对车身加速度进行控制,得出在有无PID控制车辆主动悬架系统的仿真对比。最后对车身加速度、悬架动行程和轮胎行程进行对比分析。结果证明,基于PID控制的三级减振式主动悬架能够更好的减小振动,使车辆的平顺性更好。  相似文献   

17.
基于模糊BP网络的自适应PID控制   总被引:4,自引:0,他引:4  
针对经典PID控制的参数不能在线调整的缺陷,提出了一种基于模糊BP神经网络的PID控制算法,采用模糊规则自动地调节BP神经网络训练过程的学习参数,利用神经网络较强的学习能力和模糊控制在模型未知或不精确前提下的控制能力,将其应用到PID控制中[1],实现了PID控制参数的在线调整和优化,并对其在非线性离散系统中的应用进行了仿真。实验结果表明该算法性能优良,加快了系统响应速度,减少了超调量,适用于纯滞后非线性系统。  相似文献   

18.
针对常规PID控制器不能在线修正参数以及模糊规则和率属函数对专家经验的依赖性,提出了神经网络模糊自适应PID控制器,从而综合了传统PID控制、模糊控制、神经网络控制的优点,使其具有PID控制的广泛适用性和神经网络的自适应和自学习能力,同时又具备模糊控制的非线性控制作用;仿真实验可知该控制器具有更快的响应和更好的平稳性.  相似文献   

19.
优化PID与神经PID控制主动悬架的性能对比研究   总被引:1,自引:0,他引:1  
为主动悬架选择一种更可行的控制方法,对PID与神经PID控制主动悬架进行了优化后的性能对比研究。基于1/4车二自由度主动悬架模型,利用遗传算法以悬架二次型性能指标为目标函数,分别对PID控制主动悬架的增益系数与神经PID控制主动悬架的初始权值和学习效率进行了优化。优化结果显示:优化后的PID控制主动悬架的综合性能较神经PID控制主动悬架略优。出现上述结果的原因在于:当神经PID控制主动悬架的学习效率等于零时则退化成PID控制主动悬架,学习效率不等于零则导致神经PID控制主动悬架的实时PID权值偏离了最优的PID权值。此外凸块路面输入下的仿真也显示优化PID的鲁棒性也略优于优化神经PID。因此,选择算法较复杂的神经PID对主动悬架进行控制是没有必要的。  相似文献   

20.
基于模糊PID的车辆侧倾主动控制仿真研究   总被引:2,自引:0,他引:2  
在ADAMS/Car下,建立了前后悬架都装有主动横向稳定杆的95自由度虚拟整车模型.采用模糊自适应PID控制策略,在Matlab/Simulink环境中对车辆抗侧倾性能进行了联合仿真,实现了PID控制过程中参数的在线整定.仿真结果表明,模糊自适应PID控制具有较强的自适应和抗干扰能力,有效地减小了车身侧倾角,在保证乘坐舒适性的同时提高了车辆的行驶稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号