首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
236Pu的含量控制是钚热源的一项重要参数,通过α能谱准确测量镎靶溶解液中痕量236Pu,建立镎靶辐照靶件溶解液中钚的分离方法。根据杂质组成特点采用TBP-TEVA萃取色层双柱分离,用氨基磺酸亚铁以及亚硝酸钠对钚进行调价,对靶件溶解液中的Al、Fe、U、Th和Np等进行分离,去污系数均大于104,钚的回收率为90.7%。研究大量238Pu对α能谱测定236Pu的干扰,结果表明,大量238Pu会造成仪器本底升高,238Pu能谱峰分辨率降低;在7 500 Bq 238Pu干扰下,测量4.3 h 时,236Pu的最小可检测活度为1.20×10-2 Bq(当量质量为6.11×10-16 g)。计算结果表明,镎靶溶解液样品中钚的同位素比值n(236Pu)/n(238Pu) ≥4.63×10-8时,取合适的样品量使得电沉积源中238Pu 活度在 450~7 500 Bq范围内,均可测量其中的痕量236Pu,同时可准确测定同位素比值n(236Pu)/n(238Pu)。  相似文献   

2.
核设施周边环境土壤样品中238Pu/239,240Pu活度比的信息特征可用于评估核活动,为了获得准确的核素比,需要建立238Pu/239,240Pu活度比的分析方法。在三正辛胺(TOA)萃取法分析Pu含量的基础上,考察了盐酸和硝酸洗涤以及洗涤用量对U、Th、Am等杂质元素的去除情况,并引入共沉淀步骤进行前处理流程的优化,建立起一个基于TOA萃取色层的土壤样品中238Pu/239,240Pu活度比的分析方法。当土壤样品量为25 g时,该方法Pu的化学回收率大于70%,U、Th的去污因子大于104,Am的去污因子大于103,238Pu的最低检测比活度为(6.0±1.6)×10-6 Bq/g,239,240Pu的最低检测比活度为(6.4±0.4)×10-6 Bq/g(n=3)。该方法可应用于环境土壤样品中238Pu/239,240Pu活度比的分析,为军控核查和环境监测提供技术支持。  相似文献   

3.
用气相色谱法研究了238Pu为α源的30%TBP-煤油-HNO3体系的辐解产物DBP和MBP的生成情况,研究了反萃剂、反萃条件和钚等因素对DBP/MBP分析的影响,考察了辐照累积剂量、剂量率和稀释剂等因素对DBP和MBP生成量的影响。结果表明:DBP和MBP生成量随吸收剂量、剂量率的增加而增大;在剂量率73.7Gy/min、累积剂量5×105Gy时,DBP浓度达到7.09×10-2mol/L,MBP浓度达到9.84×10-3mol/L;在吸收剂量5×105Gy时,加氢煤油、正十二烷和特种煤油中的DBP生成量分别为4.45×10-2、4.44×10-2 、4.35×10-2mol/L,MBP生成量为3.52×10-3、3.50×10-3、3.52×10-3mol/L,在吸收剂量5×105Gy时,三种稀释剂的DBP和MBP的生成量近似相等;在吸收剂量5×104Gy时,α辐照的DBP和MBP的生成量分别为5.57×10-2mol/L和5.10×10-3mol/L,对应的γ辐照的为2.50 ×10-3mol/L和3.14×10-4mol/L,α辐照产生的DBP和MBP的生成量明显大于γ辐照的。  相似文献   

4.
为提高激光共振电离质谱(LRIMS)中钚的原子化效率,设计制备了金属包覆钚源,以期提高LRIMS测量痕量钚的灵敏度。本工作设计加工了适用于痕量钚制源的电沉积装置,研究了水相中痕量钚的电沉积条件,实现了痕量钚的定量电沉积;对比研究了金属铂和钛的电镀条件及性能,确定了以钛为包覆层的真空蒸镀条件,实现了镀层厚度为1 μm、金属钛包覆的高效钚源中钚的总沉积率达95%。研究表明,制备的高效钚源经过LRIMS测试,仪器对钚样品的总探测效率为2.5×10-4,原子化效率提高至7.7%,较直接滴加源提高3个数量级,为LRIMS法高灵敏测量环境中痕量钚奠定了基础。  相似文献   

5.
梁勇  杨秀玉  王志军 《辐射防护》2018,38(2):119-122
建立了环境空气中239+240Pu的测量方法。该方法采用NF-2型滤膜采集空气样品5 000~10 000 m3,干法灰化,硝酸加热浸取钚,氨基磺酸亚铁和亚硝酸钠将钚转化为四价态,用三正辛胺—聚三氟氯乙烯粉萃取色层柱分离纯化钚,0.025 mol/L草酸—0.15 mol/L硝酸解吸,最后电沉积制源,在α谱仪上测量239+240Pu计数。通过实验确认了测量方法的主要条件和参数:电沉积制源极间距为4.0 mm,pH值为2.0;溶液萃取分离色层柱高度为6.0 cm,溶液流速2 mL/min;氧化还原时间为10 min。方法全程回收率为52.5%~82.5%,平均值68.3%;气溶胶样品量为10 000 m3时,方法探测下限为1.31×10-7Bq/m3。该方法可用于环境气溶胶中239+240Pu测量,采用本方法测定了我国西北某地区气溶胶中239+240Pu活度浓度, 结果平均值为3.25×10-6 Bq/m3。  相似文献   

6.
为了进一步优化Purex流程,研究了甲醛肟(FO)的硝酸水溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃取行为,考察了FO浓度、两相接触时间、两相相比、反萃液硝酸浓度、NO3-浓度、有机相U浓度和温度对Pu(Ⅳ)的还原反萃的影响。结果表明:延长两相接触时间能显著提高Pu(Ⅳ)的反萃率,增加甲醛肟的浓度、降低反萃液酸度、降低NO3-浓度、增加有机相U浓度和升高温度也对Pu(Ⅳ)的反萃率有一定的提高。采用16级逆流反萃取实验(还原反萃段12级,补充萃取段4级),模拟Purex流程1B槽U/Pu分离工艺,在相比(1BF∶1BX∶1BS)为4∶1∶1的条件下,U和Pu 的回收率均大于99.99%;铀中去钚的分离因子SF(Pu/U)=1.0×104;钚中去铀的分离因子SF(U/Pu)=8.3×104。FO作为新型络合 还原反萃取剂,可有效实现铀钚分离。  相似文献   

7.
介绍了一种针对土壤和沉积物样品中Pu核素的ICP-MS测量方法。该方法利用硝酸浸取和两步阴离子交换层析对样品中的Pu进行提纯和除杂,此方法对U的去污因子为1.5×105。在加入了APEX-IR雾化装置和Spiro膜去溶装置后, ICP-MS测量中影响239Pu和240Pu计数率的238U多原子离子238U1H+/238U和238U1H+2/238U产率分别为3.4×10-5和7.6×10-6。将该方法运用在我国环境土壤和沉积物的ICP-MS测量中,可使样品中Pu测量结果的相对误差降低到约千分之一。该方法对239Pu和240Pu的检测限分别为3.6 fg/mL和 7.3 fg/mL。利用该方法对IAEA-soil-6和NIST-4357两种参考物质进行前处理和ICP-MS测量,结果表明样品中239+240Pu活度浓度和240Pu/239Pu同位素原子比与参考值符合,验证了该方法的有效性和准确性。  相似文献   

8.
研究了氨基羟基脲(HSC)的硝酸水溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃取行为,考察了HSC浓度、两相接触时间、两相相比、反萃液硝酸浓度、NO3-浓度、有机相U浓度和温度对Pu(Ⅳ)还原反萃的影响。结果表明:延长两相接触时间能显著提高Pu(Ⅳ)的反萃率,增加氨基羟基脲的浓度、降低反萃液酸度、降低NO3-浓度、增加有机相U浓度和升高温度也对Pu(Ⅳ)的反萃率有一定的提高。采用16级逆流反萃取实验(还原反萃段10级,补充萃取段6级),模拟Purex流程1B槽U/Pu分离工艺,在相比(1BF∶1BX∶1BS)为4∶1∶1的条件下,U的收率大于99.99%,Pu的收率大于99.99%;铀中去钚的分离因数SFPu/U=2.8×104;钚中去铀的分离因数SFU/Pu=5.9×104。HSC作为还原反萃取剂,可有效实现铀钚分离。  相似文献   

9.
研究了温度、水相中硝酸浓度和水相中钚浓度对30%TBP-正十二烷/硝酸体系中浓钚(两相平衡后水相中Pu(Ⅳ)质量浓度为0.35~11.1g/L时)的分配比D(Pu)的影响。研究结果表明:25℃下,当硝酸浓度大于1.5mol/L时,D(Pu)随着钚浓度的增高而下降;当酸度为0.4mol/L时,钚浓度对钚分配比影响不大。当两相平衡后水相中Pu(Ⅳ)质量浓度为1.34~3.80g/L,水相中硝酸浓度分别为1.5mol/L和3.0mol/L时,在25~60℃范围,钚的分配比随温度增加而增大,最大增大率为39.4%。25℃下,当酸度分别为1.5mol/L、3.0mol/L和4.5mol/L时,30%TBP-正十二烷作为萃取剂时Pu的分配比比根据文献计算出来的30%TBP-煤油体系的值要大一些。但酸度为0.4mol/L时,两个体系中Pu的分配比接近。  相似文献   

10.
对钚材料的来源及历史的鉴定在许多领域是非常重要的。年龄是在追溯核材料的历史时第一个需要被测定的参数。钚样品的年龄测定基于钚的同位素及其子体,即238Pu/234U、239Pu/235U、240Pu/236U和241Pu/241Am的原子比的测定。  相似文献   

11.
选取YAP∶Ce闪烁体作为仪器核心部件,建立了接触式测量溶液中微量、痕量钚α活度的分析方法。结果表明:水相钚溶液浓度在5.20×10-5~1.30×10-3 g/L范围内线性良好(R2=0.987 7),定量检测下限为5.20×10-5 g/L;有机相钚溶液浓度在2.27×10-5~1.13×10-3 g/L范围内线性良好(R2=0.992 3),定量检测下限为2.27×10-5 g/L。本分析方法有别于传统的α计数法,过程无需制源,操作简单、方便,有望为后处理工艺过程中微量和痕量钚的在线或实验室分析提供一种新的途径。  相似文献   

12.
研究了模拟处置条件下Pu(Ⅳ)的溶解行为,测定了Pu(Ⅳ)在北山地下水和去离子水中的溶解度。采用过饱和法,使用低氧手套箱模拟地下无氧环境,利用超过滤实现固液分离,应用低本底液闪谱仪测量液相中钚的放射性活度。结果表明:溶解-沉淀平衡后,无论是在去离子水还是北山地下水中,钚的主要存在价态为+4。Pu(Ⅳ)在北山地下水和去离子水中的溶解度分别为(2.8±0.9)×10-8 mol/L和(1.6±0.8)×10-9 mol/L。通过计算确定了Pu(Ⅳ)在去离子水和北山地下水中的溶解度控制固相为Pu(OH)4(am)。在去离子水体系中,Pu(Ⅳ)的主要存在形态为Pu(OH)4(aq);北山地下水体系中,Pu(Ⅳ)的主要存在形态为Pu(OH)4(aq)和Pu(OH)2(CO3)2-2。  相似文献   

13.
采用穿透扩散法研究了Sr、I和Pu等3种元素在花岗岩中的扩散行为,获得了26℃下离子强度为0.1mol/L的中性水溶液环境中Sr、I和Pu的有效扩散系数分别为(1.24±0.03)×10-13、(2.88±0.02)×10-13、(1.33±0.52)×10-13 m2/s。研究表明,水溶液与花岗岩平衡过程中核素的存在形态与化学种态的变化对其迁移行为有明显影响。  相似文献   

14.
H_2O_2调价UTEVA树脂对钚的分离方法   总被引:1,自引:0,他引:1  
研究了H2O2调节钚价态至Pu(Ⅳ)的条件,对于钚质量浓度在10-3 g/L量级的溶液,适量H2O2可以将钚价态稳定在Pu(Ⅳ)。采用粒径为50~100μm的UTEVA树脂填充的柱体积为2mL的萃取色层柱,在6mol/L HNO3浓度下,使用w=1.5%H2O2作为氧化还原剂对10-2 g/L的钚进行预处理,能将钚吸附上柱。通过适当条件的洗脱,在铀、镎、钚混合溶液中,得到钚的回收率约为108%。  相似文献   

15.
进行了氨基羟基脲(HSC)的硝酸水溶液对30%(体积分数,下同)磷酸三丁酯(TBP)/煤油中高浓度四价钚(Pu(Ⅳ))的还原反萃行为研究,并采用试管串级实验对HSC在钚净化浓缩循环中反萃段工艺进行了验证。结果表明:HSC能有效地实现有机相中高浓Pu(Ⅳ)的反萃;采用13级逆流反萃试管串级实验(还原反萃段10级,补充萃取段3级),对PUREX流程钚净化浓缩反萃段工艺进行了验证,在相比(2BF∶2BX∶2BS)为1∶0.25∶0.15的条件下,Pu的收率为99.99%;钚中去铀的分离因子SF(U/Pu)=3.7×105。HSC作为还原反萃剂,可以实现30%TBP/煤油中高浓度Pu(Ⅳ)的有效反萃,在钚净化浓缩循环工艺中有良好的应用前景。  相似文献   

16.
研制了一种能同时测量混合场中γ和中子注量率的涂硼电离室,并实验测试了其性能。涂硼电离室由两个大小和结构一致的腔室组成:1个仅对γ灵敏,另1个对γ与中子均灵敏。用强度为2.7×107 s-1 的Am-Be源测得电离室的中子灵敏度达9.2×10-16 A/(cm-2•s-1),在剂量率为5.24 μGy/h的137Cs γ场中,电离室的γ灵敏度达7.36×10-16 A/(MeV•cm-2•s-1)。涂硼电离室I-V曲线坪长为600 V,坪斜小于4%/100 V,在工作电压为-400 V时,其γ补偿修正系数<5%,可用于核设施周围的混合场监测。  相似文献   

17.
在MATLAB软件平台上,利用文献报道的610组U(Ⅳ)分配比数据分别对美国、印度及日本提出的3种不同的U(Ⅳ)分配比模型函数进行了验证,验证结果表明:3种模型计算值与实验值的相对偏差均至少在20%以上,其中以美国研究者提出的U(Ⅳ)分配比模型计算效果最佳,但仍无法直接用于模拟计算U(Ⅳ)的分配比。因此,为得到相对偏差较低的U(Ⅳ)分配比模型,以美国研究者提出的模型为基础进行修正,修正后的模型为D(U(Ⅳ))=K*(U(Ⅳ))c2(fTBP),其中K*(U(Ⅳ))=(1.4/(30×c(U(Ⅳ))+1))×K*(U(Ⅵ))×(0.054 1+0.000 658×c2(NO-3)),该模型使用范围为:平衡水相硝酸浓度为0.4~4.0mol/L,U(Ⅳ)质量浓度为5~50g/L,U(Ⅵ)质量浓度为15~150g/L,Pu(Ⅲ)质量浓度为0.4~36.3g/L,肼浓度为7×10-4~2mol/L,相对偏差在±15%以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号