共查询到15条相似文献,搜索用时 62 毫秒
1.
2.
针对微震信号与爆破震动信号自动识别难的问题,提出了基于经验小波变换(EWT)的矿山微震信号识别方法。运用仿真信号对EWT和经验模态分解(EMD)进行对比检验,表明EWT分解效果要优于EMD,而且可以减少模态混叠问题;对矿山实测的400组爆破震动和微震信号进行EWT分解,得到紧支集频谱的内禀模态分量,借助互信息量筛选得到f1~f7共7个分量,进而分别利用分量f1~f7构建Hankel矩阵,计算每个Hankel矩阵的奇异值平均值、方均根值、标准差,并作为特征量;利用支持向量机(SVM)对微震和爆破震动信号进行分类。结果表明:爆破震动信号分量f1~f7的奇异值方均根值和标准差都要大于微震信号,分量f1~f5的奇异值平均值要大于微震信号;EWT_Hankel_SVD特征提取法识别效果要优于应用较为广泛的EWT_SVD,且基于EWT_Hankel_SVD分类准确率达到92.5%。 相似文献
3.
为从含噪微震信号中提取有效信息, 并准确识别岩体破裂信号和爆破振动信号, 提出了基于粒子群算法和小波阈值去噪的改进变分模态分解方法。该方法利用粒子群算法实现模态数量和惩罚因子的最优取值, 以最优参数对微震信号进行变分模态分解, 再对由高频噪声主导的模态分量进行小波阈值去噪, 将去噪后的高频信号分量与原先的低频信号分量进行重构, 实现信号降噪。经验证, 该方法相比集合经验模态分解和单纯的变分模态分解方法具有更好的降噪效果。以该方法对200组岩体破裂信号和200组爆破振动信号进行去噪, 以第一模态分量能量占比50%作为区分爆破振动信号和岩体破裂信号的依据, 识别成功率达到97.25%, 证实了此识别方法的准确性。 相似文献
4.
为了从含噪微震监测数据中提取有效的微震信号,提出了一种基于变分模态分解(Variational Mode Decomposition,VMD)和能量熵的自适应微震信号降噪方法。采用变分模态分解法对含噪微震信号进行自适应分解,得到一系列按频率从高到低的变分模态分量;计算每个变分模态分量的能量熵,搜索并辨识出噪声与信号的分界;剔除高频噪声,将剩余分量进行重构,得到降噪后的微震信号。通过与基于经验模态分解(Empirical Mode Decomposition,EMD)的微震信号降噪方法对比,从信噪比、降噪后信号占原信号的能量百分比和原信号与降噪后信号的均方根误差3个评价指标上定量说明该方法在微震信号降噪中表现出更好的降噪效果。 相似文献
5.
7.
由于获取矿井风机振动信号的特殊性,致使有效的振动信号被大量干扰信号所淹没,给基于振动信号的矿井风机故障诊断带来很大困难。为此,提出一种EMD-FFT振动信号分析方法,该方法将经验模态分解技术与傅里叶分析相结合。采用EMD对矿井风机振动信号进行分解,用FFT对分量(IMF)分别进行频谱分析,并将其按频率重组,剔除高频干扰,获取真实振动信号。通过将原始信号FFT直接分析与EMD-FFT分析对比研究,证明EMD-FFT较直接FFT在矿井风机振动信号分析中的优越性。 相似文献
8.
9.
矿山微震监测系统中所产生的微震信号数量巨大并且存在多种复杂背景噪声干扰,使得矿山微震事件的识别难度很高。现有的微震事件识别方法仍然存在降噪效率低、时延明显、精度差等问题。为了提高微震事件识别的准确度,提出一种基于改进小波分解和极限学习机(ELM)的矿山微震事件识别方法,该方法能更有效、更准确地识别矿山微震事件。针对微震信号具有不可预测、复杂、扩散等特性,提出一种改进阈值函数的小波降噪方法,其中在小波分解过程中,首先确定小波阈值和小波分解层数,再利用提出的改进的小波阈值函数对小波系数进行阈值量化处理,得到优化后的小波系数,最后对小波系数进行重构得到去噪的信号。该方法有效的改进了目前软、硬阈值函数所存在的伪吉布斯现象和不连续、误差大的缺陷。其次,提取去噪后微震信号特征并训练ELM隐藏层节点数量,并利用训练得到的ELM隐藏层节点数量构建改进的ELM,改进的ELM解决了普通ELM训练数据时无法有效选取隐藏层节点数量的问题,从而提升了微震事件识别精度。最后,通过改进后的ELM能够对矿山微震事件进行更加有效的识别。结果表明:本文基于改进小波分解和ELM的矿山微震事件识别方法的分类准确率达到91.1... 相似文献
10.
针对矿山微震信号降噪,提出了一种基于EEMD_Hankel_SVD(集合经验模态分解_Hankel矩阵_奇异值分解)的微震信号降噪方法。首先采用EEMD获得多层模态分量,计算各模态分量与原始信号的相关系数,剔除第一个相关系数差值局部最大值前的模态分量。对剩余各模态分量分别构建Hankel矩阵,再计算各Hankel矩阵的奇异值矩阵。根据奇异值曲线划分信号空间和噪声空间,实现剩余各模态分量的降噪,进而对降噪后的模态分量相加得到降噪信号。仿真试验表明该方法能有效保留信号的局部特征,提高了信噪比;矿山微震信号应用表明该方法有效地提高了STA/LTA,PAI-K和AIC法P波初至拾取效果;仿真试验和矿山微震信号P波拾取均表明该方法降噪效果优于小波重构、EMD重构和Hankel_SVD降噪,且该方法与AIC法结合拾取效果最佳。 相似文献
11.
基于EEMD方法的地下矿山微震信号去噪研究 总被引:1,自引:0,他引:1
对地下矿山实时在线监测的微震信号进行微震事件特征提取和识别分类研究时,识别的效率往往取决于训练样本和测试样本的质量,为提高数据样本的质量,去除信号中掺杂的噪声,采用聚合经验模态分解(EEMD)方法对地下矿山微震信号进行预处理。通过采用EEMD分析方法对矿山微震信号进行预处理,获得从高频到低频铺展的一组固有模式分量(IMF)及一个残余分量,通过计算各分量能量占比把IMF中的噪声部分及残余项去除,再将包含矿山微震信号主要信息的剩余分量进行重构,从而得到去噪后的微震信号。通过信号仿真实验及实例分析,对比小波预处理方法,结果表明:该方法利用EEMD自适应分解的特性不但克服了小波阈值和分解函数选取困难等弊端,而且能显著提高信号的信噪比,较好地保留了信号形态,获得较为理想的去噪效果。 相似文献
12.
针对互补集合经验模态分解(CEEMD)方法在分解过程中会产生模态分裂的现象,提出了一种利用经验模态分解改进的CEEMD方法。由于经传统CEEMD方法分解得到的IMF分量并不能满足IMF分量的严格定义,将这些分量定义为预分解IMF分量,然后利用经验模态分解对这些预分解IMF分量重新分解,得到正确的IMF分量。为了验证改进CEEMD方法的有效性,将它用于仿真信号分解中。仿真结果表明,该方法可以有效消除传统CEEMD方法出现的模态分裂现象,分解结果更符合实际情况。将改进的CEEMD方法对真实轴承故障信号进行分解,结合包络谱分析,可以准确提取故障特征频率,从而实现对轴承故障的有效诊断。 相似文献
13.
14.
大地电磁信号是解释地质构造的重要信息载体,其受长周期和随机噪声影响严重,导致地质构造的反演结果出现严重的偏差。为了解决该问题,基于变分模态分解(Variational Mode Decomposition,VMD)提出了一种综合性的大地电磁信号去噪算法。对原始电磁信号进行多分辨VMD处理去除长周期噪声,采用小波包阈值去噪法去除信号的随机噪声,使用信号重构得到去噪处理后的大地电磁信号。使用此方法对工程实测大地电磁信号进行处理,结果表明,此方法能够对大地电磁信号的长周期噪声和随机噪声进行抑制,并且极大限度地保存了信号的有效分量,提高了时域信号的周期性,全频分段的视电阻率曲线得到了明显优化。 相似文献