首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
固体超强酸催化合成季戊四醇油酸酯及其防锈性能研究   总被引:1,自引:0,他引:1  
采用SO42-/ZrO2型固体超强酸为催化剂,以油酸和季戊四醇为原料在高温下合成了季戊四醇油酸酯(PETO),确定了最佳试验工艺条件。摩擦试验结果表明,与150SN和A51相比,合成的PETO具有良好的润滑性能。将PETO与防锈剂T705进行复配,通过盐雾箱试验和电化学方法研究了其防锈性,结果表明PETO以适当比例与T705复配使用,可以有效提高T705防锈性能,是一种优良的防锈助剂。  相似文献   

2.
季戊四醇酯具有良好的氧化安定性和热安定性,生物降解率高,是一种环境友好的绿色润滑剂,具有广阔的应用前景。对用油酸和季戊四醇直接酯化合成四油酸季戊四醇酯的工艺参数进行了考察。以酯化率为指标,采用正交设计考察了催化剂种类,催化剂用量,油酸与季戊四醇的摩尔比,反应时间和反应温度等参数对四油酸季戊四醇酯酯化率的影响。对酯化率的影响依次是催化剂种类反应时间反应温度催化剂用量油酸与季戊四醇的摩尔比,最佳工艺参数为用1.0%质量分数的对甲苯磺酸作催化剂,反应时间6 h,反应温度200℃,油酸与季戊四醇的摩尔比为4.2∶1。在此工艺参数下,四油酸季戊四醇酯的酯化率达到了96.8%,说明合成工艺参数是合理可行的。用合成的四油酸季戊四醇酯调配的68号可生物降解抗磨液压油能够满足L-HM抗磨液压油的性能要求,并具有良好的抗氧化性能和润滑性能。(图1表6参考文献7)  相似文献   

3.
祁元春  董擎之 《石油化工》2013,42(8):891-896
采用直接酯化法,以对甲苯磺酸为催化剂、对苯二酚/无水CuSO4为阻聚剂、甲苯为溶剂、丙烯酸和季戊四醇为原料合成了季戊四醇二丙烯酸酯(PEDA),考察了阻聚剂种类及用量、催化剂用量、原料配比和溶剂用量对酯化反应的影响,得出了最佳合成条件:以质量比为1∶1的对苯二酚/无水CuSO4复配体系为阻聚剂且用量为2.0%(占反应物总质量,下同),对甲苯磺酸用量为2.0%,丙烯酸与季戊四醇摩尔比为2.6,甲苯用量为50%,反应温度120℃,反应时间4 h。在此条件下,粗产物收率为70%,PEDA收率为52%。将粗产物进行层析分离,通过HPLC,1H NMR,MS,FTIR等手段对粗产物中各组分进行定性、定量分析。由HPLC测定结果可知,PEDA的纯度由分离前的74%提高到99%。  相似文献   

4.
赵宁  李元鸿 《润滑油》2016,(6):48-51
以三羟甲基丙烷、双季戊四醇和油酸为原料,采用减压酯化法合成了68号混合多元醇油酸酯。研究了合成工艺条件及后处理方法对产品性能的影响。确定最佳合成工艺条件为n(TMP∶DPE∶OA)=0.7∶0.3∶3.9,油酸过量为总质量的10%,反应温度240℃,反应时间5 h,后处理工艺采用酸捕捉剂法酸值可降至0.5 mg KOH/g以下。结果表明,所制备的混合多元醇油酸酯与传统季戊四醇油酸酯相比具有更为优异的黏温性能以及低温流动性能。  相似文献   

5.
以强酸性ZSM-5分子筛催化剂合成油酸高碳醇酯,讨论了催化剂对反应的影响,随醇碳原子数增加催化剂催化活性相应减小,得出了油酸高碳醇酯最佳反应条件,催化剂用量为油酸重量10%,反应温度170~175℃,油酸与高碳醇的摩尔比为1.2:1,酯收率90%左右。  相似文献   

6.
采用溶胶-凝胶法制备了硅胶负载磷钨酸型催化剂,利用IR、XRD、TG/DTG技术,对催化剂进行表征,结果表明,磷钨酸成功负载在硅胶上,热稳定性良好。在无溶剂条件下,利用硅胶负载磷钨酸催化合成了季戊四醇月桂酸酯,通过实验,探讨了催化剂中磷钨酸的负载量、反应时间、反应温度、催化剂用量、酸醇摩尔比以及催化剂重复使用次数对酯化率的影响,当磷钨酸的负载量为71.59%,反应时间为4h,反应温度160200℃,催化剂用量为反应物总质量的1.5%,月桂酸与季戊四醇的摩尔比为4∶1时,酯化率可达84.92%以上,且催化剂重复使用性好。所得季戊四醇月桂酸酯产品外观色泽较浅,其结构经红外光谱进行了确认。  相似文献   

7.
合成酯用固体超强酸催化剂研究进展   总被引:14,自引:0,他引:14  
固体超强酸是近些年来研究较多的合成酯用催化剂,其相对于浓硫酸作为酯化反应催化剂优点显著。本文简述了酯合成中固体超强酸催化剂的使用和研究现状,介绍了层柱粘土催化剂和由其改性而得粘土固体超强酸催化剂的研究及进展情况。  相似文献   

8.
采用直接酯化法合成异硬脂酸季戊四醇酯,考察了酸醇物质的量比、反应温度和时间对酯化程度的影响,并进行了深度脱酸处理与产品性质测定。确定适宜的反应条件为:酸醇物质的量比为4.3∶1,在230℃条件下反应8 h。产物经深度脱酸后酸值(KOH)降至0.04 mg/g。红外光谱分析表明产品酯化较完全。测得产品羟值(KOH)为13.36 mg/g,闪点325℃,倾点-43℃,产品各项数据均符合润滑油基础油要求。该工艺简单易操作,对环境影响小,是较为理想的合成方法。  相似文献   

9.
开发了用硅锆交联粘土固体超强酸(SO_4~(2-)/Si-Zr-RCL)催化合成二甘醇二苯甲酸酯(DEDB)的新工艺。最佳反应条件为:以正丁醇作挟水剂,主反应温度165℃,正丁醇/二甘醇/苯甲酸(摩尔比)=0.4:0.5:1,反应时间3.5 h,w(催化剂)=1.2%(对总反应物),苯甲酸转化率达98.8%(质量分数)。该催化剂易于和产物分离,并能重复使用。  相似文献   

10.
总结了几种合成季戊四醇酯的方法。重点介绍了酯化反应合成季戊四醇酯的催化剂和工艺的研究进展,并同时阐述了不同催化剂的催化机理。研制高活性,可循环使用和后处理简单的催化剂仍然是酯化反应合成季戊四醇酯的发展目标。  相似文献   

11.
刘毅飞  张东恒  陆海迪  肖奇 《润滑油》2011,26(Z1):42-44
制备了SO42-/TiO2型固体超强酸,采用X射线衍射和红外光谱分析对其结构进行了表征,其酸强度测试结果Hammett常数为-13.6,具有超强酸酸性。以此固体超强酸为催化剂合成了季戊四醇庚酸酯(PETH),确定了醇、酸物质的量之比、反应温度、催化剂用量等优化的实验条件。对得到的PETH进行精制后,对其分子结构进行了表征,并测试了其理化性质。实验结果表明:所得产品具有较低的倾点,合适的黏度和较高的黏度指数,以及较高的闪点等,具有作为基础油的优良性能。  相似文献   

12.
通过焙烧法直接焙烧钼酸铵((NH4)6Mo7O24·4H2O),制备了一种用于季戊四醇(PER)与正庚酸(HPA)酯化合成季戊四醇四庚酸酯(PETH)反应的三氧化钼(MoO3)催化剂.采用X射线衍射(XRD)、N2吸附-脱附(BET)等手段对催化剂进行了表征.考察了焙烧温度、反应条件(温度、时间、原料配比、催化剂用量)...  相似文献   

13.
甘油三油酸酯的合成研究   总被引:2,自引:0,他引:2  
以对甲苯磺酸为催化剂合成了甘油三油酸酯 ,最佳工艺条件为催化剂用量为甘油质量的 6 .9% ,油酸过量 10 % ,反应时间 4 .5h ,反应温度 15 0~ 16 0℃时 ,产率达 92 .7%。建立了一套甘油三油酸酯的分离、分析检测方法。  相似文献   

14.
SO42-/TiO2-Al2O3固体超强酸催化合成癸二酸二异辛酯   总被引:3,自引:2,他引:1  
选择多种催化剂用于催化癸二酸和2-乙基己醇合成癸二酸二异辛酯,研究了固体超强酸SO4^2-/TiO2-Al2O3的催化性能,并考察了影响反应的因素,结果表明,适宜的反应条件为:醇酸摩尔比3.5:1;催化剂用量1.0g/mol癸二酸,带水剂甲苯10mL,反应时间4.5h,酯化率达98.5%。  相似文献   

15.
稀土固体超强酸催化合成酯的研究   总被引:82,自引:5,他引:77  
制备了一系列稀土固体超强酸,通过催化合成各种酯,研究稀土固体超强酸的催化性能。结果表明,稀土固体超强酸不但具有一般超强酸的性能,而且有催化活性高、性能稳定、且连续催化活性基本保持不变的优点。  相似文献   

16.
论述了合成聚氧乙烯油酸酯的较佳反应条件,探讨了不同EO加成数的聚氧乙烯油酸脂的表面物性规律。  相似文献   

17.
选择多种催化剂用于催化癸二酸和2-乙基己醇合成癸二酸二异辛酯,研究了固体超强酸SO42-/TiO2-Al2O3的催化性能,并考察了影响反应的因素,结果表明,适宜的反应条件为:醇酸摩尔比3.5:1;催化剂用量1.0 g/mol癸二酸,带水剂甲苯10 mL,反应时间4.5 h,酯化率达98.5%。  相似文献   

18.
固体超强酸催化剂可以降低酯化温度,提高酯化效率。主要介绍了固体超强酸催化剂在制备合成酯中的应用。  相似文献   

19.
以季戊四醇、己二酸和正庚酸为原料,固体酸为催化剂,通过酯化反应得到了一系列高黏度合成酯。考察了加料方式和原料配比对合成酯的黏度、酸值和倾点的影响,为高黏度合成酯的合成研究提供一定参考。  相似文献   

20.
固体超强酸催化涤纶废料制备对苯二甲酸二异辛酯的研究   总被引:3,自引:0,他引:3  
以自制的固体超强酸SM为催化剂,以涤纶(PET)废料和异辛醇(2-EH)为原料合成了对苯二甲酸二异辛酯(DOTP),最佳反应条件为:n(PET):n(2-EH)=1:3.8,m(SM):m(PET):1:8.4,反应温度为210-220℃,反应时间3h,DOTP收率可达97.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号