首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The stress state is one of the most notable factors that dominates the initiation of ductile fracture. To examine the effects of the stress state on plasticity and ductile failure, a new tension‐shear specimen that can cover a wide range of stress triaxialities was designed. A fracture locus was constructed in the space of ductility and stress triaxiality for two typical steels based on a series of tests. It is observed that the equivalent plastic strain at failure exhibits a nonmonotonic variation with increasing the value of stress triaxiality. A simple damage model based on the ductility exhaustion concept was used to simulate the failure behaviour, and a good agreement is achieved between simulation results and experimental data. It is further shown that consideration of fracture locus covering a wide range of stress triaxialities is a key to an accurate prediction.  相似文献   

2.
3.
为了揭示超高分子量聚乙烯(UHMWPE)纤维增强环氧树脂基复合材料的吸湿机制,利用ABAQUS有限元软件,建立二维模型,对此类复合材料的吸湿行为及吸湿应力进行研究。模拟计算了两种不同纤维分布模型内部的水分浓度场分布; 根据获得的水分浓度场,对两种模型随温度及时间变化的吸湿应力场进行了分析。结果表明: 水分在两种模型中的扩散都符合Fick扩散定律,纤维按正六边形分布模型比纤维随机分布模型更早达到吸湿平衡,但后者更符合实际情况,也与实验结果比较吻合; 长时间的吸湿会导致材料内部吸湿应力达到很高的水平(>60 MPa),温度越高,越早达到吸湿平衡,应力越大,最大的吸湿应力出现在纤维聚集最密集的基体区域,纤维随机分布模型的吸湿应力水平高于纤维按正六边形分布模型。  相似文献   

4.
In this paper the effect of strain rate on the tensile, shear and compression behaviour of a commingled E-glass/polypropylene woven fabric composite over a strain rate range of 10−3–102 s−1 is reported. The quasi-static tests were conducted on an electro-mechanical universal test machine and a modified instrumented falling weight drop tower was used for high strain rate characterisation. The tensile and compression modulus and strength increased with increasing strain rate. However, the shear modulus and strength were seen to decrease with increasing strain rate. Strain rate constants for use in finite element analyses are derived from the data. The observed failure mechanisms deduced from a microscopic study of the fractured specimens are presented.  相似文献   

5.
Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites were characterized for mechanical properties using destructive and non-destructive ultrasonic testing methods. The physical properties of the composite were determined and compared with those of cortical bone.  相似文献   

6.
In the present work, multiwalled carbon nanotube (MWNT) reinforced UHMWPE composite films were prepared by electrostatic spraying followed by consolidation. X-ray diffraction and differential scanning calorimetry studies showed a decrease in the crystallinity of UHMWPE due to the nature of the fabrication process as well as addition of MWNT. Tensile test showed an 82% increase in the Young’s modulus, decrease in stress to failure from 14.3 to 12.4 MPa and strain to failure from 3.9% to 1.4% due to 5% addition of MWNT. Raman spectra showed the presence of compressive stresses in the nanotubes. Fracture surface showed presence of pullout like phenomena in the MWNT reinforced film.  相似文献   

7.
Elastic-plastic two-dimensional (2D) and three-dimensional (3D) finite element models (FEM) are used to analyze the stress distributions ahead of notches of four-point bending (4PB) and three-point bending (3PB) specimens with various sizes of a C-Mn steel. By accurately measuring the location of the cleavage initiation sites, the local cleavage fracture stress f and the macroscopic cleavage fracture stress F is accurately measured. The f and F measured by 2D FEM are higher than that by 3D FEM. f values are lower than the F, and the f values could be predicted by f=(0.8––1.0)F. With increasing specimen sizes (W,B and a) and specimen widths (B) and changing loading methods (4PB and 3PB), the fracture load P f changes considerably, but the F and f remain nearly constant. The stable lower boundary F and f values could be obtained by using notched specimens with sizes larger than the Griffiths–Owen specimen. The local cleavage fracture stress f could be accurately used in the analysis of fracture micromechanism, and to characterize intrinsic toughness of steel. The macroscopic cleavage fracture stress F is suggested to be a potential engineering parameter which can be used to assess fracture toughness of steel and to design engineering structure.  相似文献   

8.
The elastic stress and strain fields of a finite thickness plate containing a circular hole subjected to a biaxial load are systematically investigated using the finite element method. It is found that the stress and strain concentration factors of the finite thickness plate are different even if the plate is in elasticity state. The maximum stress and strain concentration factors do not always occur on the mid plane of the plate. The maximum stress and strain concentration factors of the notch root increase from their plane stress value to their peak values, then decrease gradually with increasing thickness and tend to constant values related to the load biaxiality ratio, respectively. The stress and strain concentration factors at the notch root of free surface are the monotonic descent functions of thickness. Their values decrease rapidly and tend to lower the limit values related to the load biaxiality ratio with increasing plate thickness. The differences of stress and strain concentration factors between maximum and surface value increase rapidly and tend to constant values related to the load biaxiality ratio with increasing plate thickness. The smaller the load biaxiality ratio, the larger these differences. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Low cycle fatigue of lamellar TiAl with 8.5 at.-%Nb was studied with a total strain amplitude of 0.28% at three temperatures: room temperature, 750°C and 900°C. At room temperature, the material exhibited cyclic hardening and the fracture mode was mainly interlamellar. At 750°C and 900°C, the material showed cyclic softening and the fracture mode was translamellar. The lattice strain in γ phase was almost tensile and larger tensile lattice strain in γ phase seems detrimental. Besides, the opposite direction of {201}γ and {100}α2 lead to crack propagation along α2/γ interfaces. B2/βo phase always suffered compressive lattice strain in the tests. The destruction of lamellar microstructure was the reason for colony refinement at 750°C and 900°C.  相似文献   

10.
Behaviour of plate specimens subjected to underwater explosion is of interest to metal forming community and ship designers. The break down of the original molecule of an explosive into product molecules associated with the evolution of large amount of heat generates a shock front in the water medium, followed by a gas bubble pulsation. The interaction of the shock wave with a plate imparts energy to it, which is dissipated in the form of deformation. The intensity of explosion determines whether a plate undergoes elastic deformation, yielding, plastic deformation or fracture. When the deformation is in the elastic range, the stress developed in the plate is given as a function of the material and shock wave parameters. As the intensity of explosion progressively increases, the elastic to plastic transition occurs over a specific shock factor. Plastic deformation is predicted as a function of geometric and material properties of the plate and shock pulse impulse. Deflection-time history reveals the reloading effects of the shock wave. As the deforming plate absorbs maximum energy, depending on its strength and ductility, it undergoes fracture. Terminal strain to fracture is considered as the criterion for explosive shock performance of ship materials.  相似文献   

11.
Tapered-double cantilever-beam joints were manufactured from aluminium-alloy substrates bonded together using a single-part, rubber-toughened, epoxy adhesive. The mode I fracture behaviour of the joints was investigated as a function of loading rate by conducting a series of tests at crosshead speeds ranging from 3.33 × 10−6 m/s to 13.5 m/s. Unstable (i.e. stick–slip crack) growth behaviour was observed at test rates between 0.1 m/s and 6 m/s, whilst stable crack growth occurred at both lower and higher rates of loading. The adhesive fracture energy, GIc, was estimated analytically, and the experiments were simulated numerically employing an implicit finite-volume method together with a cohesive-zone model. Good agreement was achieved between the numerical predictions, analytical results and the experimental observations over the entire range of loading rates investigated. The numerical simulations were able very readily to predict the stable crack growth which was observed, at both the slowest and highest rates of loading. However, the unstable crack propagation that was observed could only be predicted accurately when a particular rate-dependent cohesive-zone model was used. This crack-velocity dependency of GIc was also supported by the predictions of an adiabatic thermal-heating model.  相似文献   

12.
This article presents an experimental investigation of a ductile rubber-modified polypropylene. The behaviour of the material is investigated by performing tension, shear and compression tests at quasi-static and dynamic strain rates. Subsequently, scanning electron microscopy is used to analyse the fracture surfaces of the tension test samples, and to relate the observed mechanical response to the evolution of the microstructure. The experimental study shows that the material is highly pressure and strain-rate sensitive. It also exhibits significant volume change, which is mainly ascribed to a cavitation process which appears during tensile deformation. Assuming matrix-particle debonding immediately after yielding, the rubber particles might play the role of initial cavities. It is further found that the flow stress level is highly dependent on the strain rate, and that the rate sensitivity seems to be slightly more pronounced in shear than in tension and compression. From the study of the fracture surfaces it appears that the fracture process is less ductile at high strain rates than under quasi-static conditions.  相似文献   

13.
In this study, uniaxial compression experiments of a Nickel-base superalloy is conducted over a wide range of temperatures (298–1073 K) and strain rates (0.1–5200/s) to obtain further understandings of the plastic flow behaviours. The temperature and strain rate effects on the plastic flow behaviour are analysed. The flow stress decreases with increasing temperature below 673 K. Within the temperature range of about 673–873 K, the flow stress varies indistinctively, and even increases slightly with increasing temperature. As the temperature further increases, the flow stress decreases again. The flow stress of the Nickel-base superalloy displays insensitive to strain rate below 800/s and an enormous increase with increasing strain rate in excess of 800/s. Then the effects of temperature and strain rate on the microstructure are discussed. The result shows that high strain rate and high temperature may make the grain boundary of Nickel-base superalloy frail. Taking into account the anomalous temperature and strain rate dependences of flow stress, modified J–C constitutive model is developed. The model is shown to be able to accurately predict the plastic flow behaviour of Nickel-base superalloy over a wide range of temperatures and strain rates.  相似文献   

14.
The definition of a measure of strain, referred to as the bi-configuration strain tensor, centres on the difference between the left Cauchy-Green deformation tensor and its inverse. A new measure of stress, coined the bi-configuration stress tensor, has been defined. This measure of stress refers the traction in the current configuration jointly to the referential and spatial configurations, that is, to an effective element of area identified as an element of bi-configuration area. The stress and strain tensors are assumed to be constitutively related by a finite strain form of a generalised Hooke's law. The predictions obtained from the proposed constitutive equation are compared with the observed mechanical behaviour of various test materials. Comparison with experiment centres on biaxial stress measurements in various simple modes of deformation identified by way of a generalised stress-strain relation. The predictions from the proposed constitutive theory are in good accord with the results of experiment.  相似文献   

15.
The mechanical behavior and the deformation and failure micromechanisms of a thermally-bonded polypropylene nonwoven fabric were studied as a function of temperature and strain rate. Mechanical tests were carried out from 248 K (below the glass transition temperature) up to 383 K at strain rates in the range ≈10−3 s−1 to 10−1 s−1. In addition, individual fibers extracted from the nonwoven fabric were tested under the same conditions. Micromechanisms of deformation and failure at the fiber level were ascertained by means of mechanical tests within the scanning electron microscope while the strain distribution at the macroscopic level upon loading was determined by means of digital image correlation. It was found that the nonwoven behavior was mainly controlled by the properties of the fibers and of the interfiber bonds. Fiber properties determined the nonlinear behavior before the peak load while the interfiber bonds controlled the localization of damage after the peak load. The influence of these properties on the strength, ductility and energy absorbed during deformation is discussed from the experimental observations.  相似文献   

16.
Abstract

In recent years, a method has been developed to measure current creep strength at nearly constant structure in a high precision stress relaxation test (SRT), covering at least five decades in creep rate in a one day test. Results have been reported on a wide range of metallic alloys, polymers, composites and ceramics. In the present paper it is shown that these same data can be used to determine a measure of intrinsic ductility over the same range of stress, using results on a low alloy Cr–Mo–V steel. This is based on an experimental and theoretical correlation between elongation at failure and strain rate sensitivity, m. This refined SRT test can now be used to evaluate both the intrinsic creep strength and the intrinsic ductility as a function of stress in a single short-time test. The test can detect embrittling phenomena at very low creep rates as a function of temperature. This measure of ductility may be used directly in engineering design and remaining life assessment.  相似文献   

17.
Ductile crack growth behaviours of TP304 pipes containing different circumferential defects were investigated in the study. Finite element (FE) damage analysis of the ductile fracture was carried out based on an uncoupled multiaxial fracture strain energy (MFSE) model with only two model parameters, which can be calibrated by data from tensile tests and fracture toughness tests. For the purpose of comparison, the Gurson–Tvergaard–Needleman (GTN) model was also employed in the FE damage analysis. It is observed that the MFSE model can reproduce the ductile tearing experiments as excellently as the GTN model does. Despite its simplicity, the MFSE model can reasonably predict the magnitudes of the crack initiation load and maximum load, the load‐line displacement, the crack mouth opening displacement, the crack extension and the crack profiles in the full‐scale cracked pipe tests.  相似文献   

18.
The thermal weight function (TWF) is a universal function, which is dependent only on the crack configuration and body geometry, and is independent of temperature fields. The TWF method is especially suitable for determining the variation of transient stress intensity factors (SIFs) of a cracked body subjected to thermal shock. TWF is independent of time during thermal shock, so the whole variation of transient SIFs can be directly calculated through integration of the products of TWF and transient temperatures and temperature gradients. The repeated determinations of the distributions of stresses (or displacements) fields for individual time instants are thus avoided in the TWF method, which are necessary when the direct method through analyses of thermo-elasticity or the mechanical weight function (MWF) method is applied. The finite element implementation of the TWF method for Mode I in plane stress, plane strain and axisymmetric problems are presented in this paper. In the TWF method, the integration should be carried out around the boundary as well as over the whole volume. So, it is a practical and useful way to develop an integrated system of programs for solving the thermal shock problems by means of the TWF method, which has been developed by authors. Examples show that the scheme shown in this paper is of very high efficiency and of good accuracy.  相似文献   

19.
This paper is devoted to the extraction of the dynamic stress intensity factor (DSIF) for structures containing multiple discontinuities (cracks, voids and inclusions) by developing the extended finite element method (XFEM). In this method, four types of enrichment functions are used in the framework of the partition of unity to model interface discontinuity within the classical finite element method. In this procedure, elements that include a crack segment, the boundary of a void or the boundary of an inclusion are not required to conform to discontinuous edges. The DSIF is evaluated by the interaction integral. After the effectiveness of the implemented XFEM program is verified, the effects of voids, inclusions and other cracks on the DSIF of a stationary major crack are investigated by using XFEM. The results show that the dynamic effects have an influence on the path independence of the interaction integral, and these voids, inclusions and other cracks have a significant effect on the DSIF of the major crack.  相似文献   

20.
This paper presents the results of an experimental and theoretical investigation of the magnetic fracture behaviour of double cantilever beam (DCB) specimens. DCB tests were conducted on ferritic stainless steel SUS430 in the bore of a superconducting magnet at room temperature. A simple experimental technique using strain gauges was used to determine the stress intensity factor. The experiments show the predicted increase in the stress intensity factor with increasing magnetic field. The theoretical analysis is based on a beam‐plate theory for magnetoelastic interactions in a soft ferromagnetic material. Numerical calculations are carried out, and the stress intensity factor is obtained for several values of magnetic field. A comparison of the stress intensity factor is made between theory and experiment, and the agreement is good for the magnetic field considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号