共查询到20条相似文献,搜索用时 15 毫秒
2.
语音是人类表达思想和感情交流最重要的工具,是人类文化的重要组成部分。语音情感识别作为情感计算中的重要课题已经成为国际上的研究热点,受到越来越多的关注。已有神经科学研究表明,大脑是产生调节情感的物质基础。因此,在语音情感的研究中,我们不能仅考虑语音信号自身,还应将大脑的活动信号融入语音情感识别中,以实现更高准确率的情感识别。基于上述思想,本文提出了一种基于核典型相关分析(KCCA)的语音特征提取方法。该方法将语音特征与脑电图(EEG)特征映射到高维希尔伯特空间,并计算二者的最大相关系数。KCCA将语音特征在高维希尔伯特空间上向与脑电特征相关性最大的方向投影,最终得到包含脑电信息的语音特征。本文方法将与语音情感相关的脑电信息融入语音情感特征提取中,所提特征能够更准确的表征情感。同时,本方法在理论上具有良好的可迁移性,当所提脑电特征足够准确与具有代表性时,KCCA建模得到的投影向量具有通用性,可直接用于新的语音情感数据集中而无需重新采集和计算相应的脑电信号。在自建语音情感数据库与公开语音情感数据库MSP-IMPROV上的实验结果表明,使用投影语音特征进行语音情感分类的方法优于使用原始音频特征... 相似文献
3.
语音情感识别是利用计算机建立语音信息载体与情感度量之间的关系,并赋予计算机识别、理解人类情感的能力,语音情感识别在人机交互中起着重要作用,是人工智能领域重要发展方向。本文从语音情感识别在国内外发展历史以及开展的一系列会议、期刊和竞赛入手,分别从6个方面对语音情感识别的研究现状进行了梳理与归纳:首先,针对情感表达从离散、维度模型进行了阐述;其次,针对现有的情感数据库进行了统计与总结;然后,回顾了近20年部分代表性语音情感识别发展历程,并分别阐述了基于人工设计的语音情感特征的情感识别技术和基于端到端的语音情感识别技术;在此基础之上,总结了近几年的语音情感识别性能,尤其是近两年在语音领域的重要会议和期刊上的语音情感识别相关工作;介绍了语音情感识别在驾驶、智能交互领域、医疗健康,安全等领域的应用;最后,总结与阐述了语音情感识别领域仍面临的挑战与未来发展方向。本文旨在对语音情感识别相关工作进行深入分析与总结,为语音情感识别相关研究者提供有价值的参考。 相似文献
4.
5.
提出了一种基于LS-SVM的情感语音识别方法。即先提取实验中语音信号的基频,能量,语速等参数为情感特征,然后采用LS-SVM方法对相应的情感语音信号建立模型,进行识别。实验结果表明,利用LS-SVM进行基本情感识别时,识别率较高。 相似文献
6.
7.
语音情感识别的研究进展 总被引:11,自引:0,他引:11
情感在人类的感知、决策等过程扮演着重要角色.长期以来情感智能研究只存在于心理学和认知科学领域,近年来随着人工智能的发展,情感智能跟计算机技术结合产生了情感计算这一研究课题,这将大大的促进计算机技术的发展.情感自动识别是通向情感计算的第一步.语音作为人类最重要的交流媒介,携带着丰富的情感信息.如何从语音中自动识别说话者的情感状态近年来受到各领域研究者的广泛关注.本文从语音情感识别所涉及的几个重要问题出发,包括情感理论及情感分类、情感语音数据库、语音中的情感特征和语音情感识别算法等,介绍了当前的研究进展,并讨论了今后研究的几个关键问题. 相似文献
8.
9.
10.
11.
基于多线性核主成分分析的掌纹识别 总被引:1,自引:4,他引:1
提出运用多线性核主成分分析(MKPCA)的一种新方法进行掌纹识别.首先MKPCA通过非线性变换,将输入样本图像向高维特征空间F上投影,运用多线性主成分分析(MPCA)直接对掌纹张量进行降维,得到低维的投影张量;然后掌纹图像向张量子空间上投影提取特征向量;最后计算特征向量间的余弦距离进行掌纹匹配.运用PolyU掌纹图像库... 相似文献
12.
13.
实际的研究表明,语音情感识别方法有多种.介绍了一种基于GMM的语音情感识别方法,包括该方法的优点、存在的问题或不足等,并对此进行了思考,给出了一些处理办法. 相似文献
14.
基于一种改进的监督流形学习算法的语音情感识别 总被引:2,自引:0,他引:2
为了有效提高语音情感识别的性能,需要对嵌入在高维声学特征空间的非线性流形上的语音特征数据作非线性降维处理。监督局部线性嵌入(SLLE)是一种典型的用于非线性降维的监督流形学习算法。该文针对SLLE存在的缺陷,提出一种能够增强低维嵌入数据的判别力,具备最优泛化能力的改进SLLE算法。利用该算法对包含韵律和音质特征的48维语音情感特征数据进行非线性降维,提取低维嵌入判别特征用于生气、高兴、悲伤和中性4类情感的识别。在自然情感语音数据库的实验结果表明,该算法仅利用较少的9维嵌入特征就取得了90.78%的最高正确识别率,比SLLE提高了15.65%。可见,该算法用于语音情感特征数据的非线性降维,可以较好地改善语音情感识别结果。 相似文献
15.
16.
针对快速发展的语音情感识别技术,归纳总结了机器学习算法在语音情感识别领域的发展过程并预测语音情感识别技术的发展方向.首先针对语音情感的离散描述模型,总结语音情感识别模型训练和识别算法的一般过程;然后,根据机器学习算法的发展阶段,分别对比分析传统机器学习算法,深度神经网络、卷积神经网络、循环神经网络等深度学习算法与语音情... 相似文献
17.
对语音情感识别的起源及主要研究内容作了介绍,对国内外语音情感识别的研究现状作了归纳总结;对语音情感特征的提取、情感分类器的建模算法作了重点分析介绍,最后对情感识别未来发展方向进行了展望. 相似文献
18.
语音情感识别是实现智能人机交互的关键技术之一。然而,用于语音情感识别的语音情感特征十分有限。为此,本文提出一种新型的语谱图显著性特征来改善语音情感识别效果。识别算法利用选择性注意模型获取语音信号语谱图像的显著图,并从中提取显著性特征,结合语音信号传统的时频特征构成语音情感识别特征向量。最后,本文利用KNN分类方法进行语音情感识别。实验结果表明,加入显著性特征后识别率有明显提升。 相似文献
19.
20.
本文提出将语音情感识别技术运用于呼叫中心的日常工作,以解决录音质检、投诉校准、客户情绪第一时间识别、客服代表服务热情实时提醒等问题。 相似文献