首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study provides an experimental model of the apoptotic death of pyramidal neurons in rat olfactory cortex after total bulbectomy. Terminal transferase (TdT)-mediated deoxyuridine triphosphate (d-UTP)-biotin nick end labeling (TUNEL), DNA electrophoresis, and neuronal ultrastructure were used to provide evidence of apoptosis; neurons in olfactory cortex were counted by stereology. Maximal TUNEL staining occurred in the piriform cortex between 18 and 26 hr postbulbectomy. Within the survival times used in the present study (up to 48 hr postlesion), cell death was observed exclusively in the piriform cortex; there was no evidence of cell death in any other areas connected with the olfactory bulb. Neurons undergoing apoptosis were pyramidal cells receiving inputs from, but not projecting to, the olfactory bulb. The apical dendrites of these neurons were contacted by large numbers of degenerating axonal terminals. Gel electrophoresis of DNA purified from lesioned olfactory cortex showed a ladder pattern of fragmentation. Inflammatory cells or phagocytes were absent in the environment of degenerating neurons in the early stages of the apoptotic process. The present model suggests that deafferentation injury in sensory systems can cause apoptosis. In addition, olfactory bulbectomy can be used for investigating molecular mechanisms that underlie apoptosis in mature mammalian cortical neurons and for evaluating strategies to prevent the degeneration of cortical neurons.  相似文献   

2.
A highly specific anti-glutamate monoclonal antibody, mAb2D7, was used together with light and electron microscopy to elucidate the role played by the amino acid glutamate in the projection from the olfactory bulb to the piriform cortex in the rat. By light microscopy, glutamate-like immunoreactivity was observed in neuronal cell bodies and in the neuropil of the piriform cortex. Double labelling experiments which involved injections of wheat germ agglutinin-horse--radish peroxidase into the olfactory bulb and a post-embedding immunogold method for electron microscopy revealed anterogradely labelled terminals making asymmetric synaptic contacts on dendrites in the piriform cortex which contained high levels of glutamate as assessed by quantification. These results further support a role for glutamate as a neurotransmitter in the efferent pathway of the rat olfactory bulb.  相似文献   

3.
The evoked potential recorded in the rat piriform cortex in response to electrical stimulation of the olfactory bulb is composed of an early component occasionally followed by a late component (60-70 ms). We previously showed that the late component occurrence was enhanced following an olfactory learning. In the present study carried out in naive rats, we investigated the precise conditions of induction of this late component, and its spatiotemporal distribution along the olfactory pathways. In the anaesthetized rat, a stimulating electrode was implanted in the olfactory bulb. Four recording electrodes were positioned, respectively, in the olfactory bulb, the anterior and posterior parts of the piriform cortex, and the entorhinal cortex. Simultaneous recording of signals evoked in the four sampled structures in response to stimulation of the olfactory bulb revealed that the late component was detected in anterior and posterior piriform cortex as well as in entorhinal cortex, but not in the olfactory bulb. The late component occurred reliably for a narrow range of low intensities of stimulation delivered at frequencies not exceeding 1 Hz. Comparison of late component amplitude and latency across the different recorded sites showed that this component appeared first and with the greatest amplitude in the posterior piriform cortex. In addition to showing a functional dissociation between anterior and posterior parts of the piriform cortex, these data suggest that the posterior piriform cortex could be the locus of generation of this late high amplitude synchronized activity, which would then propagate to the neighbouring regions.  相似文献   

4.
Bursts of beta-frequency (15-35 Hz) electroencephalogram activity occur in the olfactory system during odour sampling, but their mode of propagation within the olfactory system and potential contribution to the mechanisms of learning and memory are unclear. We have elicited large-amplitude beta activity in the rat olfactory system by applying noxious olfactory stimuli (toluene), and have monitored the bursts via chronically-implanted electrodes. Following exposure to toluene, coherent bursts with a peak frequency of 19.8 +/- 0.9 Hz were observed in the olfactory bulb, piriform cortex, entorhinal cortex and dentate gyrus. The timing of the bursts and the phases of electroencephalogram cross-spectra indicate that beta bursts propagate in a caudal direction from the olfactory bulb to the entorhinal cortex. The time delays between peaks of bursts in these structures were similar to latency differences for field potentials evoked by olfactory bulb or piriform cortex test-pulses. Peaks of burst cycles in the dentate region, however, were observed just prior to those in the entorhinal cortex. Surprisingly, power in toluene-induced beta-frequency oscillations was not increased following long-term potentiation induced by tetanic stimulation of the olfactory bulb, piriform cortex and entorhinal cortex. The activity of local inhibitory mechanisms may therefore counteract the effects of synaptic enhancements in afferent pathways during beta bursts. Low-frequency electrical stimulation of the piriform cortex was most effective in inducing coherent oscillatory responses in the entorhinal cortex and dentate gyrus at stimulation frequencies between 12 and 16 Hz. The results show that repetitive polysynaptic volleys at frequencies in the beta band induced by either toluene or electrical stimulation are transmitted readily within the olfactory system. The propagation of neural activity within this frequency range may therefore contribute to the transmission of olfactory signals to the hippocampal formation, particularly for those odours which induce high-amplitude bursts of beta activity.  相似文献   

5.
Newborn Sprague-Dawley rats received a single dose of 2 Gy X-rays and were killed 6 hr later. Dying cells were characterized by extreme chromatin condensation and nuclear fragmentation. Dying cells were distributed in the primary and secondary germinal zones and in other brain regions. Among these latter, dying cells occurred in the cortical layers of the olfactory bulb, layers II-III and VIb of the neocortex, piriform and entorhinal cortex, stratum oriens and pyramidale of the hippocampus, striatum, thalamus, amygdala, brainstem, internal granular layer of the cerebellum, and cerebral and cerebellar white matter. Dying cells were immature cells, neurons and glial cells (including radial glia). In-situ labeling of nuclear DNA fragmentation identified individual cells bearing fragmented DNA. Since the number of cells stained with this method was larger than the number of dying cells, as revealed with current histological techniques, it is suggested that nuclear DNA fragmentation precedes chromatin condensation and nuclear fragmentation in X-ray-induced apoptosis. Furthermore, agarose gel electrophoresis of extracted DNA from irradiated brains showed a "ladder" pattern which is typical of internucleosomal DNA fragmentation and endonuclease activation.  相似文献   

6.
Pyramidal cells in piriform (olfactory) cortex receive afferent input from the olfactory bulb as well as intrinsic association input from piriform cortex and other cortical areas. These two functionally distinct inputs terminate on adjacent apical dendritic segments of the pyramidal cells located in layer Ia and layer Ib of piriform cortex. Studies with bath-applied cholinergic agonists have shown suppression of the fast component of the inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of the association fibers. It was previously demonstrated that an associative form of LTP can be induced by coactivation of the two fiber systems after blockade of the fast, gamma-aminobutyric acid-A-mediated IPSP. In this report, we demonstrate that an associative form of long-term potentiation can be induced by coactivation of afferent and intrinsic fibers in the presence of the cholinergic agonist carbachol.  相似文献   

7.
Olfaction is impaired in Alzheimer's disease (AD). It was hypothesized that AD would reduce olfactory-evoked perfusion in mesial temporal olfactory (piriform) cortex, where neuropathology begins. Seven AD patients and 8 elderly controls (ECs) underwent olfactory threshold and identification tests and olfactory stimulation during positron emission tomography. Odor identification was impaired in AD, but threshold was not. Olfactory stimulation in ECs activated right and left piriform areas and right anterior ventral temporal cortex. AD patients had less activation in right piriform and anterior ventral temporal cortex but not in the left piriform area. Although orbital cortex did not activate in ECs, there was a significant between-groups difference in this area. Right piriform activation correlated with odor identification. Impaired odor identification likely reflects sensory cortex dysfunction rather than cognitive impairment. Given olfactory bulb projections to the mesial temporal lobe, olfactory stimulation during functional imaging might detect early dysfunction in this region. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
Cellular events associated with degeneration of the projection of the olfactory bulb to the molecular layer of the piriform cortex of the mouse have been studied with rapid-Golgi and Fink-Heimer impregnations and with the electron microscope. Four classes of axon terminals: s-1, s-d, f-1, and f-d, are differentiated on the basis of whether the synaptic vesicles are spherical or flattened and whether the axoplasm is lightly or darkly stained. The majority of s-1 terminals, the predominant class in sublamina Ia of the molecular layer, degenerate after bulb ablation. Degeneration of axon terminals is associated with dilation and, eventually, degeneration of segments of dendrites in Ia. Both s-1 and s-d terminals contribute to a partial reconstitution of the neuropil of Ia during the weeks after bulb ablation.  相似文献   

9.
The olfactory epithelium has been shown to contain fifth-type cells and microvillar cells and olfactory receptor cells along with supporting and basal cells. However, the morphological differences among them are unknown, especially between the former two, and most of their functions are still unclear. In this study, the fifth-type cell and the microvillar cell in the olfactory epithelium of mouse were micromorphologically investigated by SEM and TEM. With the aim of elucidation their functions, the morphological change in these cells after resection of olfactory bulb were studied. In addition, the changes in the olfactory epihelium after HRP injections into the postganglionic fiber for the trigeminal nerve and the olfactory bulb were examined. The TEM observation revealed that the fifth-type cell has finger-like microvilli, which are strong and straight. The microvilli were characterized by a specific core structure consisting of microfilament bundles. On the other band, the microvilli of the microvillar cell were meandering and had no core structure, indicating that the two cells are clearly different types. By SEM observation, neither the fifth-type cell nor the microvillar cell was found in the normal olfactory epithelium. When the olfactory cillial mat disappeared as a result of recection of the olfactory bulb, the fifth-type cell became observable. On the 300th-day after the resection, it was found that the olfactory receptor cells had disappeared and the microvilli of the supporting cells were shortened. Thus, the surface structure of the microvillar cell became clearly observable. Then, the microvilli were found to be shorter than those of the fifth-type cell and were distributed radially. Neither the fifth-type cell nor the microvillar cell was not affected by resection of the olfactory bulb. Most of the olfactory vesicles were HRP positive after the HRP injection into the olfactory bulb; however, HRP was not detected in either the fifth-type cells or the microvillar cells. After the HRP injection into the trigeminal postganglionic fiber, it was detectable in part of the nerves in the lamina propria mucosa and the epithelal basement, but not in the fifth-type cell or microvillar cell. These results suggest that the fifth-type cell is a mechanoreceptor for a system other than the olfactory one and the microvillar cell is a kind of supporting cell in an early stage or final stage near death.  相似文献   

10.
Soman (pinacolymethylphosphonofluoridate), a highly potent, irreversible inhibitor of cholinesterase, causes intense convulsions, neuropathology and, ultimately, death. There is evidence that certain brain structures are selectively vulnerable to the pathological consequences of soman-induced seizures. A working hypothesis is that central nervous system (CNS) structures with the earliest and most severe signs of neuropathology may be key sites for the initiation of the seizures. Fos, the immediate-early gene product, increases rapidly in several animal seizure models. Thus, we reasoned that the earliest brain regions to express Fos might be involved in the initiation and maintenance of soman-induced convulsions. To assess this, rats were injected with a single, convulsive dose of soman (77.7 micrograms/kg, i.m.). The animals were euthanized and processed for immunocytochemical analysis at several time points. Robust Fos expression was seen in layer II of the piriform cortex and the noradrenergic nucleus locus coeruleus within 30-45 minutes. One hour following soman injection, staining was more intense in the piriform cortex layer II and in the locus coeruleus. In addition, Fos was evident in the piriform cortex layer III, the entorhinal cortex, the endopiriform nucleus, the olfactory tubercle, the anterior olfactory nucleus and the main olfactory bulb. By 2 hours, Fos staining was present throughout the cerebral cortex, thalamus, caudate-putamen and the hippocampus. At 8 hours and beyond, Fos expression returned to control levels throughout the CNS except for the piriform cortex and the locus coeruleus which still had robust labeling. By 24 hours, neuropathology was evident throughout the rostral-caudal extent of layer II of the piriform cortex. The rapid induction of Fos in the piriform cortex and the locus coeruleus, taken together with previous anatomical, eletrophysiological and neurochemical studies, suggests that prolonged, excessive exposure to synaptically released acetylcholine and norepinephrine triggers the production of soman-induced seizures initially in the piriform cortex and subsequently in other cortical and subcortical structures.  相似文献   

11.
Immunoreactivity for Fos protein following 30 min of sensory and behavioral experience with foster pups was measured in different brain areas of nulliparous female Balb/c mice who were intact, ovariectomized, or selectively depleted of olfactory bulb noradrenaline. Fos expression was also investigated in intact nulliparous female mice undergoing distal exposure to pup sensory cues. Behavioral interaction with pups increased Fos immunoreactivity in the olfactory areas (anterior olfactory nucleus, piriform cortex, corticomedial amygdala, and entorhinal cortex) as well as in the medial preoptic area, and this occurred regardless of whether females were intact or ovariectomized. Noradrenaline depletion of the olfactory bulb prevented Fos induction in primary olfactory areas, but not in the medial preoptic area, whereas distal exposure to pup cues enhanced Fos expression in the olfactory areas but not in the medial preoptic area. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Concentrations of 11 trace elements were determined in 56 control and 98 Alzheimer's disease (AD) olfactory bulb, olfactory tract, olfactory trigone, piriform cortex and amygdala specimens by instrumental neutron activation analysis. Iron and zinc were significantly elevated and bromine was significantly depleted in olfactory regions of AD patients, compared with normal age-matched control subjects. Elevated iron could possibly play a role in neuronal degeneration in AD by enhancing reactive free radical formation.  相似文献   

13.
Twenty-four hour exposure to cycloheximide produced a concentration-dependent reduction in protein synthesis in mouse cortical cell cultures. Unexpectedly, a 24 h pretreatment with cycloheximide exposure also reduced neuronal vulnerability to subsequent oxygen-glucose deprivation-induced injury, measured both acutely (cell swelling) or after one day (cell lysis). This neuroprotective effect was attenuated if the period of cycloheximide pretreatment was shortened to 8 h, and lost if the pretreatment was shortened to 1 h. A comparable neuroprotective effect was also induced by 24 h pretreatment with another protein synthesis inhibitor, emetine. The neuroprotection induced by pretreatment with cycloheximide or emetine was probably not attributable to reduction of apoptosis: (i) neuronal death under these conditions occurs by N-methyl-D-aspartate receptor-mediated excitotoxic necrosis, not apoptosis; (ii) the same cycloheximide pretreatment did not block staurosporine-induced apoptosis. Also unlikely as an explanation is reduction in postsynaptic vulnerability to excitotoxicity, as death induced by exogenous addition of N-methyl-D-aspartate, kainate, or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate was little affected by cycloheximide pretreatment. Rather, the protective effect of cycloheximide pretreatment was probably explained, at least in part, by marked reduction in the glutamate release induced by oxygen-glucose deprivation.  相似文献   

14.
The sensation and perception of smell (olfaction) are largely dependent on sniffing, which is an active stage of stimulus transport and therefore an integral component of mammalian olfaction. Electrophysiological data obtained from study of the hedgehog, rat, rabbit, dog and monkey indicate that sniffing (whether or not an odorant is present) induces an oscillation of activity in the olfactory bulb, driving the piriform cortex in the temporal lobe, in other words, the piriform is driven by the olfactory bulb at the frequency of sniffing. Here we use functional magnetic resonance imaging (fMRI) that is dependent on the level of oxygen in the blood to determine whether sniffing can induce activation in the piriform of humans, and whether this activation can be differentiated from activation induced by an odorant. We find that sniffing, whether odorant is present or absent, induces activation primarily in the piriform cortex of the temporal lobe and in the medial and posterior orbito-frontal gyri of the frontal lobe. The source of the sniff-induced activation is the somatosensory stimulation that is induced by air flow through the nostrils. In contrast, a smell, regardless of sniffing, induces activation mainly in the lateral and anterior orbito-frontal gyri of the frontal lobe. The dissociation between regions activated by olfactory exploration (sniffing) and regions activated by olfactory content (smell) shows a distinction in brain organization in terms of human olfaction.  相似文献   

15.
Serotonin 2A receptor (5-HT2A receptor) is widely distributed in the central nervous system, and has been suggested to be involved in a variety of behavioral conditions and neuropsychiatric disorders. Two polyclonal antibodies were raised against the N-terminus peptide of rat 5-HT2A receptor in chickens (5-HT2A-N) and a glutathione S-transferase fusion protein that contained the C-terminus of the mouse 5-HT2A receptor in rabbits (5-HT2A-C). Affinity-purified 5-HT2A-N and -C antibodies reacted strongly with a single band of 77-78 kDa in postsynaptic density proteins prepared from the rat cortex. The distribution pattern of immunoreactive structures in the rat brain was virtually the same for the two antibodies. The highest levels of immunoreactivity were observed in the olfactory bulb, neocortex, claustrum, piriform cortex, mamillary bodies, pontine nuclei, red nucleus and cranial motor nuclei. In the olfactory bulb, mitral cells were intensely labeled. In the neocortex, many immunoreactive neurons were found in layers II-VI. In layer IV of the neocortex, strong neuropil labeling was observed. In a double-labeling study using chicken 5-HT2A-N and rabbit anti-glial fibrillary acidic protein (GFAP) antibody, a considerable number of GFAP positive cells also showed 5-HT2A immunoreactivity. By using an immunoelectron microscopic technique, 5-HT2A receptor immunoreaction was shown to be localized just beneath the postsynaptic membrane thickening of asymmetric synapses.  相似文献   

16.
The ileal Peyer's patch (PP) is the major site of B cell production and is a site of immunoglobulin gene diversification in the sheep. Within the ileal PP follicles there is both intense proliferation and death of B cells. We have previously demonstrated that most, if not all of this death can be attributed to apoptosis. Likewise, ileal PP B cells die rapidly by apoptosis in culture--after 6 h many cells appear pyknotic and about 50% of cellular DNA is fragmented. We now show that the DNA fragmentation and cell death of ileal PP B cells can be almost completely abrogated during the first 12 h of culture by the addition of the phorbol esters, phorbol dibutyrate (PBu2) or phorbol myristate acetate. This inhibition of apoptosis could be sustained for greater than 24 h by the concomitant addition of both PBu2 and the Ca2+ ionophore A23187. However, the rescue of B cells from apoptosis by PBu2, with or without Ca2+ ionophore, was prevented by macromolecular synthesis inhibitors or inhibitors of protein kinase C activation. Furthermore, treatment of cultures with PBu2, with or without Ca2+ ionophore, resulted in an activated B cell phenotype and a three- to fourfold increase in cell proliferation. We conclude that protein kinase C activation in conjunction with an increase in intracellular [Ca2+] can provide the signals necessary to rescue ileal PP B cells from apoptosis, and speculate that these ileal PP B cells are destined to die unless they receive a signal that rescues them from the death pathway.  相似文献   

17.
1. Intracellular recordings were made from the output neurons (mitral and tufted cells) of the rat olfactory bulb during electrical orthodromic stimulation of the olfactory nerve layer (ONL) and antidromic stimulation of the lateral olfactory tract and posterior piriform cortex (pPC) to test for physiological differences among the neuron types. Many of these neurons were identified by intracellular injections of biocytin, and others were identified by their pattern of antidromic activation. 2. Both marked and unmarked mitral cells showed large inhibitory postsynaptic potentials (IPSPs) in response to antidromic stimulation of the pPC, whereas tufted cells exhibited small IPSPs in response to pPC stimulation. Tufted cells, however, showed large IPSPs in response to ONL stimulation. In many cases, these tufted cell responses to ONL stimulation were larger than the mitral cell responses. The marked superficial tufted cells, those with basal dendrites in the superficial sublayer of the external plexiform layer (EPL), had the smallest IPSPs in response to pPC stimulation. These data support anatomic observations suggesting that the granule cell populations responsible for the IPSPs may be different for mitral and for superficial tufted cells. 3. The different types of output cells also showed differences in their responses to orthodromic stimulation. Type I mitral cells, which have basal dendrites confined to the deep sublayer of the EPL, were significantly less excitable by ONL stimulation than were the type II mitral cells, which have basal dendrites distributed within the intermediate sublayer of the EPL. Half of the type I mitral cells could not be excited at all by ONL stimulation. Superficial tufted cells showed even greater orthodromic excitability than type II mitral cells, usually responding to ONL stimulation with two or more spikes. 4. The ionic basis of the IPSPs in the superficial tufted cells appeared similar to those described for mitral cells. These IPSPs could be reversed by chloride injection and were associated with increased membrane conductance. 5. For both mitral and tufted cells, the number of ONL electrodes evoking IPSPs was greater than the number evoking spikes. These data suggest a kind of center-surround organization of inputs to these cells from the ONL, although this does not yet imply that the sensory receptive field of these output cells has a center-surround organization. 6. In conclusion, the properties of rat olfactory bulb output cells correlate with the sublayers of the EPL in which their basal dendrites lie.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Crystals of the lipophilic tracer DiI were applied to discrete regions of the olfactory epithelium of goldfish to trace the primary sensory projection to the olfactory bulb. Receptors from the anterior half of the sensory sheet project primarily to glomeruli in the medial half of the bulb and receptors in the posterior half terminate mainly within the lateral half of the bulb. This pattern disappeared following ablation of selected, discrete epithelial regions. In order to investigate reorganization of secondary olfactory projections, unoperated control and unilaterally bulbectomized animals received injections of [3H]proline into the right olfactory bulb. Densities of silver grains per unit area were determined within six different forebrain nuclei in both the right and left hemispheres of each animal. Of the six areas examined, three demonstrated a significantly greater density of afferent innervation from the ipsilateral versus contralateral bulb; a difference which disappeared in two of these three regions after bulbectomy. Thus, for at least two forebrain nuclei, bulb removal caused a change in the afferent input from the spared olfactory bulb to those regions. We conclude that both primary and secondary olfactory projections in goldfish are capable of some degree of reorganization following insult.  相似文献   

19.
It is generally agreed that naturally-occurring neuronal death in developing animals is dependent on the synthesis of proteins. Oxidative stress, as when intracellular concentrations of free radicals are raised or when cell constituents such as membrane lipids or protein thiols are oxidized, is also involved in various types of neuronal death. In the present report, we show that the number of naturally dying retinal cells in the chick embryo can be reduced by intraocular injections of cycloheximide, an inhibitor of protein synthesis. L-buthionine-[S,R]-sulfoximine, an inhibitor of glutathione synthesis, can either enhance or diminish the cell death, depending on the conditions of treatment. Moreover, when the two inhibitors are combined, L-buthionine-[S,R]-sulfoximine potentiates the neuroprotective effects of cycloheximide. Measurements of retinal glutathione concentration and protein synthesis show the specificity of the treatments: buthionine-sulfoximine diminishes glutathione concentrations but not protein synthesis whereas cycloheximide inhibits protein synthesis without decreasing glutathione concentrations. Naturally-occurring neuronal death thus seems to involve the synthesis of proteins, and is also influenced by oxidative phenomena. Our results extend previous data in tectal-lesioned embryos, and suggest that a moderate, non-lethal oxidative stress can enhance the resistance of ganglion cells that might otherwise have died (spontaneously or following axotomy) owing to insufficient retrograde trophic support.  相似文献   

20.
In the frog, unitary electrophysiological recordings have been extensively used to investigate odor processing along the olfactory pathways. By comparing spontaneous and odor-evoked activities of neuroreceptor, mitral and cortical cells, we have collected fundamental data relating to coding abilities of the three olfactory levels, the olfactory mucosa, the bulb and the cortex. Based on a synthesis of our experimental data related to GABAergic and dopaminergic involvement in the olfactory bulb, this paper aims to match this information with computational data and to discuss some questions on bulbar processing. This paper is also devoted to further analyze original results on coding properties of two functionally evidenced neuron subpopulations in the olfactory cortex. Thus, the assumption according to which some cortical neurons may work as temporal integrators while others as coincidence detectors is presented. Moreover, the pertinence that the neural code may be carried by a single spike with varying latency was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号