首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new beam finite element based on a new discrete-layer laminated beam theory with sublaminate first-order zig-zag kinematic assumptions is presented and assessed for thick and thin laminated beams. The model allows a laminate to be represented as an assemblage of sublaminates in order to increase the model refinement through the thickness, when needed. Within each sublaminate, discrete-layer effects are accounted for via a modified form of DiSciuva's linear zig-zag laminate kinematics, in which continuity of interfacial transverse shear stresses is satisfied identically. In the computational model, each finite element represents one sublaminate. The finite element is developed with the topology of a fournoded rectangle, allowing the thickness of the beam to be discretized into several elements, or sublaminates, if necessary, to improve accuracy. Each node has three engineering degrees of freedom, two translations and one rotation. Thus, this element can be conveniently implemented into general purpose finite-element codes. The element stiffness coefficients are integrated exactly, yet the element exhibits no shear locking due to the use of a consistent interdependent interpolation scheme. Numerical performance of the current element is investigated for an arbitrarily layered beam, a symmetrically layered beam and a sandwich beam with low and high aspect ratios. The comparisons of numerical results with elasticity solutions show that the element is very accurate and robust.  相似文献   

2.
该文基于锯齿理论构造了两节点梁单元,并用此单元分析了软核夹层梁屈曲问题。该文使用的锯齿理论能够预先满足层间应力连续条件,并且未知变量的个数独立于层合梁的层数。为了说明锯齿理论的准确性,Reddy理论和一阶理论也被选择作为比较。数值结果表明:基于锯齿理论构造的梁单元能够准确的预测软核夹层梁的临界载荷,然而Reddy理论和一阶理论明显高估了此结构临界载荷。  相似文献   

3.
The static behavior of composites and sandwich plates in thermo-mechanical environment is investigated by a two dimensional (2D) FE model. An efficient higher-order zig-zag theory (HOZT) considering actual through-thickness temperature profile and a least square error (LSE) method to accurately predict the inter-laminar stresses is implemented in this model. The in-plane displacement field is obtained by superposing a cubically varying global displacement field on a zig-zag displacement field having different slopes at each layer. This plate theory represents parabolic through thickness variation of transverse shear stresses, which satisfy the inter-laminar continuity at the layer interfaces and zero transverse shear stress conditions at the top and bottom of the plate. In the present 2D finite element (FE) model, the first derivatives of transverse displacement have been treated as independent variables to circumvent the problem of C1 continuity associated with the above plate theory (HOZT). The accurate through-thickness distribution of temperature is obtained by using a linear zig-zag thermal lamination theory proposed by the authors by using the thermal conduction properties of different constituent layers in the thickness direction. The LSE method is applied at the postprocessing stage to accurately calculate the inter-laminar stresses by the 3D equilibrium equations of the plate problem, after in-plane stresses are calculated. The proposed combined FE model (HOZT+LSE) is implemented to analyze the static behavior of laminated composites and sandwich plates subjected to thermo-mechanical loadings. Many new results are also presented that should be useful for the future reference.  相似文献   

4.
A higher-order shear deformation beam theory is presented to analyze geometrically nonliner bending of thick, rectangular beams made from bimodular materials. This is performed by using a mixed finite element model. Results are reported for maximum deflections of simply-supported and clamped-clamped beams under a uniformly distributed load. The effect of material bimodularity on the nonlinear transverse deflection is investigated.  相似文献   

5.
A theory of space curved beams with arbitrary cross‐sections and an associated finite element formulation is presented. Within the present beam theory the reference point, the centroid, the centre of shear and the loading point are arbitrary points of the cross‐section. The beam strains are based on a kinematic assumption where torsion‐warping deformation is included. Each node of the derived finite element possesses seven degrees of freedom. The update of the rotational parameters at the finite element nodes is achieved in an additive way. Applying the isoparametric concept the kinematic quantities are approximated using Lagrangian interpolation functions. Since the reference curve lies arbitrarily with respect to the centroid the developed element can be used to discretize eccentric stiffener of shells. Due to the implemented constitutive equations for elastoplastic material behaviour the element can be used to evaluate the load‐carrying capacity of beam structures. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents static behaviour of functionally graded (FG) sandwich beams by using a quasi-3D theory, which includes both shear deformation and thickness stretching effects. Various symmetric and non-symmetric sandwich beams with FG material in the core or skins under the uniformly distributed load are considered. Finite element model (FEM) and Navier solutions are developed to determine the displacement and stresses of FG sandwich beams for various power-law index, skin-core-skin thickness ratios and boundary conditions. Numerical results are compared with those predicted by other theories to show the effects of shear deformation and thickness stretching on displacement and stresses.  相似文献   

7.
In this paper a generalized finite element model is developed for static and dynamic analyses of laminated composite plates using zeroth-order shear deformation theory (ZSDT). The theory ensures the parabolic distribution of transverse shear stresses across the plate thickness. A four-noded plate element is considered in this model and the generalized nodal variables are expressed using Lagrangian linear interpolation functions and Hermitian cubic interpolation functions. The solutions of the finite element model have been compared with the existing solutions for symmetric and antisymmetric laminated composite plates. The comparison confirms that the ZSDT can be efficiently used for finite element analysis of both thin and thick plates with high accuracy.  相似文献   

8.
《Composites Part B》2013,45(1):100-111
The super convergent finite beam elements are newly presented for the spatially coupled stability analysis of composite beams. For this, the theoretical model applicable to the thin-walled laminated composite I-beams subjected to the axial force is developed. The present element includes the transverse shear and the warping induced shear deformation by using the first-order shear deformation beam theory. The stability equations and force–displacement relationships are derived from the principle of minimum total potential energy. The explicit expressions for the seven displacement parameters are then presented by applying the power series expansions of displacement components to simultaneous ordinary differential equations. Finally, the element stiffness matrix is determined using the force–displacement relationships. In order to demonstrate the accuracy and the superiority of the beam element developed by this study, the numerical solutions are presented and compared with the results obtained from other researchers, the isoparametric beam elements based on the Lagrangian interpolation polynomial, and the detailed three-dimensional analysis results using the shell elements of ABAQUS. The effects of shear deformation, boundary condition, fiber angle change, and modulus ratios on buckling loads are investigated in the analysis.  相似文献   

9.
Numerical models for finite element analyses of assemblages of thin-walled open-section profiles are presented. The assumed kinematical model is based on Timoshenko–Reissner theory so as to take shear strain effects of non-uniform bending and torsion into account. Hence, strain elastic-energy coupling terms arise between bending in the two principal planes and between bending and torsion. The adopted model holds for both isotropic and orthotropic beams. Several displacement interpolation fields are compared with the available numerical examples. In particular, some shape functions are obtained from ‘modified’ Hermitian polynomials that produce a locking-free Timoshenko beam element. Analogously, numerical interpolation for torsional rotation and cross-section warping are proposed resorting to one Hermitian and six Lagrangian formulation. Analyses of beams with mono-symmetric and non-symmetric cross-sections are performed to verify convergence rate and accuracy of the proposed formulations, especially in the presence of coupling terms due to shear deformations, pointing out the decay length of end effects. Profiles made of both isotropic and fibre-reinforced plastic materials are considered. The presented beam models are compared with results given by plate-shell models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
A new discrete Kirchhoff quadrilateral element based on the refined third-order theory is developed for the analysis of composite plates. The element has seven degrees of freedom per node, namely, the three displacements, two rotations and two transverse shear strain components at the mid-surface. The inplane displacements and the shear strains are interpolated using bilinear interpolation functions and the mid-surface rotations are interpolated using bi-quadratic functions based on the discrete Kirchhoff technique. The element stiffness matrix and the consistent load vector are developed using the principle of virtual work. The finite element formulation is validated by comparing the results for simply-supported plate with the analytical Navier solution. Comparison of the present results with those using other available elements based on the TOT establishes the superiority of the present element in respect of simplicity, accuracy and computational efficiency. The element is free from shear locking  相似文献   

11.
Static behavior of composite beams with arbitrary lay-ups using various refined shear deformation theories is presented. The developed theories, which do not require shear correction factor, account for parabolical variation of shear strains and consequently shear stresses through the depth of the beam. In addition, they have strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. A two-noded C1 finite element with six degree-of-freedom per node which accounts for shear deformation effects and all coupling coming from the material anisotropy is developed to solve the problem. Numerical results are performed for symmetric and anti-symmetric cross-ply composite beams under the uniformly distributed load and concentrated load. The effects of fiber angle and lay-ups on the shear deformation parameter and extension-bending-shear-torsion response are investigated.  相似文献   

12.
Reddy's higher-order theory is quite attractive, but it could not describe a zig-zag shape distribution of in-plane displacement through the thickness direction and violates the continuity of transverse shear stresses at interfaces. This is due to neglect of the zig-zag function in the in-plane displacement field. Thus, a Reddy-type higher-order zig-zag theory is developed for analysis of multilayered composite plates. The developed model differs from existing ones by two features. First, a Reddy-type zig-zag function (RZZF) satisfying the bounding surface free traction condition is constructed. By introducing the RZZF into Reddy's model, a Reddy-type higher-order zig-zag model can be obtained. Second, a functional suitable for composite plate has been presented to obtain improved transverse shear stresses by employing the three-field Hu–Washizu (HW) variational principle. It is significant that the higher-order derivatives of displacement parameters in expression of transverse shear stresses have been eliminated, which is convenient for the model's finite element implementation. Equilibrium equations and analytical solution can be also presented by means of the HW variational principle. The performance of the proposed model is tested with different numerical examples, and numerical results show its accuracy and range of applicability.  相似文献   

13.
For the deflection analyses of thin-walled Timoshenko laminated composite beams with the mono- symmetric I-, channel-, and L-shaped sections, the stiffness matrices are derived based on the solutions of the simultaneous ordinary differential equations. A general thin-walled composite beam theory considering shear deformation effect is developed by introducing Vlasov’s assumptions. The shear stiffnesses of thin-walled composite beams are explicitly derived from the energy equivalence. The equilibrium equations and force-deformation relations are derived from energy principles. By introducing 14 displacement parameters, a generalized eigenvalue problem that has complex eigenvalues and multiple zero eigenvalues is formulated. Polynomial expressions are assumed as trial solutions for displacement parameters and eigenmodes containing undetermined parameters equal to the number of zero eigenvalues are determined by invoking the identity condition to the equilibrium equations. Then the displacement functions are constructed by combining eigenvectors and polynomial solutions corresponding to nonzero and zero eigenvalues, respectively. Finally, the stiffness matrices are evaluated by applying the member force-displacement relations to the displacement functions. In addition, the finite beam element formulation based on the classical Lagrangian interpolation polynomial is presented. In order to verify the validity and the accuracy of this study, the numerical solutions are presented and compared with the finite element results using the isoparametric beam elements and the detailed three-dimensional analysis results using the shell elements of ABAQUS. Particularly the effects of shear deformations on the deflection of thin-walled composite beams with the mono-symmetric I-, channel-, and L-shaped sections with various lamination schemes are investigated.  相似文献   

14.
This paper presents a new finite element formulation, referred to as reference surface element (RSE) model, for numerical prediction of dynamic behaviour of delaminated composite beams and plates using the finite element method. The RSE formulation can be readily incorporated into all elements based on the Timoshenko beam theory and the Reissner–Mindlin plate theory taking into account the transverse shear deformations. The ‘free model' and ‘constrained model' for dynamic analysis of delaminated composite beams and/or plates have been unified in this RSE formulation. The RSE formulation has been applied to an existing 2-node Timoshenko beam element taking into account the transverse shear deformations and the bending–extension coupling. Frequencies and vibration mode shapes are determined through solving an eigenvalue problem. Numerical results show that the present RSE model is reliable and practical when used to predict frequencies and mode shapes of delaminated composite beams. The RSE formulation has also been used to investigate the effects of the number, size and interfacial loci of delaminations on frequencies and mode shapes of composite beams.  相似文献   

15.
In a companion paper,1 equations of motion and closed-form solutions for spatial stability and free vibration analysis of shear flexible thin-walled elastic beams were analytically derived from the linearized Hellinger–Reissner principle. In this paper, elastic and geometric stiffness matrices and consistent mass matrix for finite element analysis are evaluated by using isoparametric and Hermitian interpolation polynomials. Isoparametric interpolation functions with 2, 3 and 4 nodes per element are utilized in isoparametric beam elements, and in Hermitian beam elements, the third- and fifth-order Hermitian polynomials including shear deformation effects are newly derived and applied for the calculation of element matrices. In order to verify the validity of the finite element formulation, both analytic and numerical solutions for spatial buckling and free vibration problems including shear effects are presented and compared.  相似文献   

16.
基于修正力插值的纤维单元(MFBFE)的力插值函数中加入剪力插值函数,从单元层次上考虑了弯矩和剪力的耦合作用,适合以剪切变形为控制因素的小跨高比连梁(跨高比小于2.5)的非线性数值模拟。本文从截面层次上建议了一种针对小跨高比连梁的剪切滞回模型,该模型抛弃了屈服剪力与峰值剪力相等的假设条件,其骨架曲线为四折线型,包括开裂点、屈服点、峰值点以及破坏点,卸载、再加载路径的变化以及捏缩效应由所建议的滞回规则体现。在OpenSees中单轴材料类开发这一剪切滞回模型(CBHShear),给出了OpenSees框架下MFBFE单元调用CBHShear材料的实现方式。最后基于MFBFE单元和CBHShear模型,对不同小跨高比、配筋率、配箍率、钢筋强度、混凝土强度的4个连梁试件进行低周反复加载数值分析,所得结果与试验结果进行对比,验证了CBHShear能够很好地体现连梁的非线性行为,具有较高地预测精度,适用范围更为广泛。  相似文献   

17.
An efficient and computationally low cost finite element (FE) model is developed for dynamic free and forced response of sandwich beams with embedded shear piezoelectric layers based on a coupled refined high-order global-local theory. Contrary to most of the available models, all of the kinematic and stress boundary conditions are ensured at the interfaces of the shear piezoelectric layers. Moreover, both the electrical-induced strains components and transverse flexibility are taken into account for the first time in the present theory. For validation of the proposed model, various free and forced vibration tests for thin and thick sandwich beams are carried out. For various electrical and mechanical boundary conditions, excellent agreement has been found between the results obtained from the proposed formulation with previously published and the coupled two-dimensional (2D) FE results.  相似文献   

18.
This paper presents an efficient and simple higher-order theory for analyzing free vibration of cylindrical beams with circular cross section where the rotary inertia and shear deformation are taken into account simultaneously. Unlike the Timoshenko theory of beams, the present method does not require a shear correction factor. Similar to the Levinson theory for rectangular beams, this new model is a higher-order theory for beams with circular cross section. For transverse flexure of such cylindrical beams, based on the traction-free condition at the circumferential surface of the cylinder, two coupled governing equations for the deflection and rotation angle are first derived and then combined to yield a single governing equation. In the case of no warping of the cross section, our results are exact. A comparison is made of the natural frequencies with those using the Timoshenko and Euler–Bernoulli theories of beams and the finite element method. Our results are useful for precisely understanding the mechanical behavior and engineering design of circular cylindrical beams.  相似文献   

19.
Vibration characteristics of laminated composite beams with magnetorheological (MR) layer are investigated using layerwise theory. In most studies, shear strain across the thickness of MR layer has been considered as a constant value, which does not precisely describe the shear strain. In this study, layerwise theory is employed to develop a finite element formulation to investigate MR-laminated beams. Experimental tests under different magnetic fields are carried out to verify the numerical results. Layerwise numerical results are compared with the experimental results and other theories. An empirical expression for complex shear modulus is presented. The effects of MR layer thickness on vibration of MR-laminated beams are examined.  相似文献   

20.
C0 finite element model based on higher order zig-zag plate theory is used to study the stability analysis of laminated sandwich plates. The in-plane displacement field is obtained by superposing a global cubically varying displacement field on a zig-zag linearly varying displacement field with different slope in each layer. The transverse displacement assumes to have a quadratic variation within the core and constant in the faces. The conditions regarding transverse shear stress at layer interfaces and top and bottom are satisfied. Numerical examples covering different features of laminated sandwich plates are presented to illustrate the accuracy of the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号