首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of conductive carbon black (CCB) on the physico-mechanical, thermal, and electrical properties have been investigated by various characterization techniques. Physico-mechanical properties of the vulcanizates were studied with variation of filler loading, which revealed that the tensile strength increased up to 20 phr (parts per hundred rubber) CCB loading, whereas at higher filler loading it decreased marginally. Furthermore, tensile modulus, tear strength, and hardness gradually increased with increase in filler loading. The compression set and abrasion loss decreased with increasing CCB loading. The bound rubber content (Bdr) of unvulcanized rubber was found to increase significantly with increasing CCB content. The crosslink density increased, whereas the swelling decreased with CCB loading. The thermal stability of the vulcanizates evaluated by thermogravimetric analysis (TGA) showed a minor increment with increase in CCB content. It is observed from the dynamic mechanical thermal analysis (DMTA) that the storage modulus (E′), loss modulus (E″), and glass transition temperature (T g) of ethylene acrylic elastomer (AEM) matrix increased by incorporation of CCB. The dielectric relaxation characteristics of AEM vulcanizates such as dielectric permittivity (ε′), electrical conductivity (σ ac), and electric moduli (M′ and M″) have been studied as a function of frequency (101 to 106 Hz) at different filler loading. The variation of ε′ with frequency and filler loading was explained based on the interfacial polarization of the fillers within a heterogeneous system. The ε′ increased with increasing the CCB loading and it decreased with applied frequency. The frequency dependency of σ ac was investigated using conduction path theory and percolation threshold limit. The σ ac increased with increase in both CCB concentration and applied frequency. The M′ increased with applied frequency, however, it decreased above 30 phr filler. The M″ peak shifted towards higher frequency region and above 20 phr filler loading the peaks were not observed within the tested frequency region. The electromagnetic interference shielding effectiveness (EMISE) was studied in the X-band frequency region (8–12 GHz), which significantly improved with increase in CCB loading.  相似文献   

2.
A series of styrene–butadiene rubber (SBR) composites have been prepared with different weight ratios of polyacetylene based conducting carbon black (CCB) (0–90 phr). The SBR–CCB systems are characterized for dimensional stability which is enhanced by increasing the CCB loading because of enhancement in polymer-filler interaction. The electrical properties such as dielectric constant (εr), dissipation factor (tan δ) and dielectric loss (ε″) of the composites have been studied. The influence of different loading of CCB (0–90 phr), frequency of ac (100 Hz–30 MHz) and temperature (25–75 °C) on the electrical properties was studied. An increase in dielectric constant and tan δ of the SBR composites was observed with increase in CCB content and ac frequency. This is due to enhancement of filler–filler interaction and the increase in continuity of conducting phase. The surface morphology has been studied using scanning electron microscopy (SEM).  相似文献   

3.
Butyl rubber–Ba(Zn1/3Ta2/3)O3 (BR–BZT) composites and butyl rubber–silica (BRS) composites were prepared by sigma mixing. The dielectric properties at 1 MHz and 5 GHz of BR–BZT and BRS composites were investigated as a function of ceramic loading and were found to be improved with filler loading. For a optimum BZT loading of 0.26 vf, the BR–BZT composite have εr = 4.88, tanδ = 0.0022 (at 5 GHz), coefficient of thermal expansion (CTE) = 112 ppm/°C, thermal conductivity (TC) = 0.30 Wm?1 K?1 and water absorption = 0.047 vol%. The BRS composites attained εr = 2.79, tanδ = 0.0039 (at 5 GHz), CTE = 102 ppm/°C, TC = 0.40 Wm?1 K?1 and water absorption = 0.078 vol% for the same loading of silica. The stress–strain curves of both composites showed good flexibility of the composite. The measured relative permittivity and TC of both composites were compared with different theoretical approaches.  相似文献   

4.
High dielectric constant and low loss (1 ? x) ZrTi2O6–xZnNb2O6 ceramic fillers have been prepared by the conventional solid-state reaction technique. Ceramic filled polytetrafluoroethylene (PTFE) microwave composite substrates were fabricated through the hot-pressing process. The microwave dielectric properties of (1 ? x) ZrTi2O6–xZnNb2O6/PTFE composites were measured using stripline resonator method. The relative dielectric constant (ε r) and loss tangent (tan δ) of the composites increase with an increase of x in the (1 ? x) ZrTi2O6–xZnNb2O6 ceramic at an optimum filler loading of 46vol%. As the x in the (1 ? x) ZrTi2O6–xZnNb2O6 ceramic increase, the coefficient of thermal expansion and temperature coefficient of dielectric constant decrease. 0.55ZrTi2O6–0.45ZnNb2O6 filled PTFE composite exhibits a dielectric constant of 7.32 with a loss tangent of 0.0015 (10 GHz) and a temperature coefficient of dielectric constant of ?84 ppm/oC at an optimum filler loading of 46 vol%.  相似文献   

5.
Nanocystalline LaFeO3 powders with different grain sizes (30–150 nm) have been synthesized by a polymerized complex method to investigate their magnetic and dielectric properties. Thermogravimetric–differential thermal analysis curves of the precursory powders reveal the thermal decomposition and crystallization temperature should be at above 650 °C. The precursory powders were sintered at temperatures of 650, 700, 800, and 900 °C for 2 h. X-ray diffraction identify that all the samples are phase-pure. Weak ferromagnetic behaviors and finite exchange bias (EB) effects were observed for all the samples at room temperature, and both Mr and HEB decreases monotonically with the increase of grain size. For 30 nm sample, the remnant magnetization and the EB field are 0.086 emu/g and 310 Oe, respectively. On the other hand, the dielectric constants decrease with the decreasing of grain size. Among all the samples, 150 nm samples show the largest dielectric constant about 6 × 103.  相似文献   

6.
The effect of Ba(Zn1/3Ta2/3)O3 (BZT) ceramic filler on the dielectric, mechanical and thermal properties of high density polyethylene (HDPE) matrix have been investigated. The dispersion of BZT particles in the matrix was varied up to 0.45 volume fraction (Vf). The SEM images confirmed the increase in connectivity between the filler particles with the increase in filler loading. All the composites showed excellent densification (>99 %) with relatively low moisture absorption (<0.04 wt%). The dielectric properties of the composites were investigated at 1 MHz, 5 GHz and at 10 GHz. The relative permittivity and the dielectric loss were found to increase as a function of BZT loading. Different theoretical models were used to predict the relative permittivity at 10 GHz. Effective medium theory gave the best correlation with the experimental results. An enhancement in the thermal conductivity (TC) and a reduction in the coefficient of linear thermal expansion (CTE) were achieved with filler loading. A slight decrease in the tensile strength was also observed with BZT loading. At 10 GHz, 0.45 Vf BZT reinforced HDPE showed a low relative permittivity (εr = 8.2) and a low dielectric loss (tanδ = 1.6 × 10?3) with good thermal (TC = 1.4 W m?1 K?1, CTE = 92 ppm/°C) and mechanical (tensile strength = 18 MPa) properties.  相似文献   

7.
This paper is aiming to analyze the effects of electron beam irradiation on the mechanical properties and structural–morphology of nano-sized montmorillonite (MMT) added polyvinyl alcohol (PVOH) composite. MMT particles were added to the PVOH matrix at various loading level that ranges from 0.5 to 4.5 phr MMT and electron beam irradiated with dosages ranging from 6 to 36 kGy. The results showed that tensile strength of MMT added PVOH composites at 1.5 and 2.5 phr MMT were observed marginally higher compare to neat PVOH when irradiation dosages increased to 26 kGy. However, when the concentration of MMT exceeded 2.5 phr, the application of irradiation seems to cause adverse effect to the PVOH–MMT composite. Besides, according to the X-ray diffraction analysis, the application of low irradiation dosage (⩽16 kGy) has significantly enhanced the intercalation effect of MMT particles at high loading (4.5 phr) in PVOH matrix. This also found to be consistent with the scanning electron microscopy observation where the dispersion of MMT particles in PVOH matrix was noted to be more homogeneous than non-irradiated samples. Further increment in irradiation dosage up to 36 kGy has significantly reduced the crystallinity which indicates the higher radiation energy could rupture the crystallite structures in PVOH matrix.  相似文献   

8.
The influence of ionising radiation on physico-chemical properties of metoprolol tartrate (MT) in solid phase was studied. The compound was irradiated by radiation produced by a beam of high-energy electrons in an accelerator, in doses from 25 to 400 kGy, and the possible changes in the samples were detected by organoleptic analysis (colour, forms, clarity), chromatographic and spectrometric methods. Already at the standard sterilisation dose of 25 kGy, the presence of free radicals (0.3764 × 1016 spin/g) and a decrease in the melting point by 1°C were noted. At higher doses of irradiation products of radiolysis appeared (100 kGy) and the colour was changed from white to pale cream (200 kGy). Our observation was that with increasing mass loss of MT after irradiation with 100, 200 and 400 kGy, the concentration of free radicals increased from 1.0330 to 1.6869 × 1016 spin/g. The radiolytic yield of total radiolysis was 4.54 × 107 mol/J for 100 kGy, 7.42 × 107 mol/J for 200 kGy and 4.74 × 107 mol/J for 400 kGy. No significant changes were observed in the character of FT–IR spectra, but in UV an increase in intensity of the band at the analytical wavelength was noted. As follows from the results MT shows high radiochemical stability for the typical sterilisation doses 25–50 kGy, and will probably be able to be sterilised by radiation in the dose of 25 kGy.  相似文献   

9.
采用乳液法制备了聚甲基丙烯酸甲酯接枝改性的天然橡胶(MNR),并通过机械共混法制备了其与导电炭黑(CCB)的复合材料,研究了橡胶分子链接枝改性对复合材料微观结构和电磁性能的影响。研究结果表明,与天然橡胶(NR)相比,CCB会在MNR中选择性偏聚,形成更完善的填料损耗网络,进而改善复合材料的电磁性能。复合材料电磁性能随着CCB含量的增加而增加,当CCB含量为30phr时,复合材料的电导率、介电损耗因子、反射损耗达到峰值,分别为0.75S/m、0.34、-22.38dB,依次为CCB/NR复合材料的2.18倍、1.48倍和2.15倍;基于微相分离,讨论了复合材料对电磁波的衰减机理。  相似文献   

10.
Polytetrafluorethylene (PTFE) composites filled with perovskite (Ca,Li,Sm)TiO3 (CLST) dielectric ceramic of various volume fractions filler up to 60% were prepared. The effects of volume fraction of ceramic filler on the microstructure and dielectric properties of the composites have been investigated. A comparative study of dielectric properties of experiment and modeling analysis has been carried out at high frequencies for the CLST/PTFE composites. The results indicate that both the dielectric constant and the dielectric loss increase with the filler. The CLST/PTFE composite with 40% ceramic has exhibited good dielectric properties: ε r?=?7.92 (~10 GHz), tan δ?=?1.2?×?10?3 (~10 GHz), and τ f?=??45 ppm/°C. The dielectric properties are obviously better than most composites reported previously at high frequencies in the aspects of dielectric loss and thermal stability. The dielectric constant and dielectric loss of composites predicted by the Rother–Lichtenecker equation and the general mixing model are in good agreement with the experiment data when the volume fraction of ceramic is less than 40%. When the volume fraction of the ceramic is more than 40%, the deviation occurs. By introducing the correction factor, the theoretical values of the dielectric constant agrees well with the experimental values.  相似文献   

11.
The use of rice husk (RH) powder as a reinforcing filler in blends of natural rubber and high-density polyethylene (NR/HDPE) was studied via surface modification of the particle surface. The RH powder was pre-washed with sodium hydroxide (NaOH) prior to coating with liquid natural rubber (LNR) and reinforced by electron beam (EB) irradiation. The effects of the radiation dosage on the LNR-coated rice husk (RHr) as a reinforcing agent in the composite were evaluated from the mechanical and thermal properties, as well as from the blend homogeneity. The mechanical properties enhanced with the dosage of radiation on the RHr, and reached an optimum dose in the range 20–30 kGy. The composites filled with radiated RHr showed the highest storage modulus (E′) and low tangent delta (tan δ) a radiation dosage of 30 kGy. The scanning electron microscopy (SEM) micrograph of the fractural tensile surface showed that an effective RHr particle matrix interaction occurred in the RH powder at a radiation dosage of 20 kGy. Improved RH filler–matrix interfacial bond strength and adhesion to the matrix were achieved by coating the RH powder and curing the rubber coat by electron beam irradiation.  相似文献   

12.
《Composites Part B》2013,44(8):3069-3075
The use of rice husk (RH) powder as a reinforcing filler in blends of natural rubber and high-density polyethylene (NR/HDPE) was studied via surface modification of the particle surface. The RH powder was pre-washed with sodium hydroxide (NaOH) prior to coating with liquid natural rubber (LNR) and reinforced by electron beam (EB) irradiation. The effects of the radiation dosage on the LNR-coated rice husk (RHr) as a reinforcing agent in the composite were evaluated from the mechanical and thermal properties, as well as from the blend homogeneity. The mechanical properties enhanced with the dosage of radiation on the RHr, and reached an optimum dose in the range 20–30 kGy. The composites filled with radiated RHr showed the highest storage modulus (E′) and low tangent delta (tan δ) a radiation dosage of 30 kGy. The scanning electron microscopy (SEM) micrograph of the fractural tensile surface showed that an effective RHr particle matrix interaction occurred in the RH powder at a radiation dosage of 20 kGy. Improved RH filler–matrix interfacial bond strength and adhesion to the matrix were achieved by coating the RH powder and curing the rubber coat by electron beam irradiation.  相似文献   

13.
Na0.5Bi0.5Cu3Ti4O12 (NBCTO)/poly(vinylidene fluoride) (PVDF) composites with various NBCTO volume fractions were prepared via solution mixing and hot pressing process. The structure, morphology, and dielectric properties of the composites were characterized with X-ray diffraction (XRD), thermal-gravimetric analysis (TGA), scanning electron microscope (SEM), and broadband dielectric spectrometer. The dielectric constant (ε) and dielectric loss (tan δ) of the composites were both found to increase with increasing NBCTO volume fraction within the frequency range of 1–106 Hz at room temperature. Relatively high dielectric constant of 79.8 and low loss of 0.21 at 1 kHz were obtained for the NBCTO/PVDF composite with 50 vol% NBCTO. Additionally, theoretical models like Logarithmic mixture rule, Maxwell–Garnet, Effective medium theory, and Yamada model were also employed to predict the dielectric constant of these composites. The values obtained by the EMT model are in close agreement with the experimental values.  相似文献   

14.
Dielectric composites made using two kinds of poly(vinylidene fluoride–trifluoroethylene) [P(VDF–TrFE)] (70/30 and 80/20 mol%) as polymer matrices and nickel particles coated carbon nanotubes (Ni–CNTs) as filler were developed via solution-processed method. The scanning electron microscopy (SEM) indicated good compatibility and dispersion of Ni–CNTs in the P(VDF–TrFE) matrix. Ni–CNTs/P(VDF–TrFE) composites exhibited high dielectric constants with low dielectric losses. The maximum dielectric constants of Ni–CNTs/P(VDF–TrFE) composites of 198 and 185 at 100 Hz were obtained at 18.0 wt% Ni–CNTs loading, respectively. The incorporation of Ni–CNTs in the P(VDF–TrFE) matrix resulted in enhanced thermal conductivity. The highest values, obtained at 18.0 wt% Ni–CNTs loading, were 1.05 and 1.03 W/m K, respectively. Although there were no very obvious difference, the dielectric properties and thermal conductivity of Ni–CNTs/P(VDF–TrFE) 70/30 mol% composites were slightly better to those of Ni–CNTs/P(VDF–TrFE) 80/20 mol% composites in many cases. The aforementioned results suggest that these high-performance composites hold great promise for application in electrical and electronic field.  相似文献   

15.
The Ba0.859 Ca0.141 Zr0.106 Ti0.894 (BCZT) nano-particles were modified by polyimide (PI) through a chemical coating method. And the PI@BCZT/polyvinylidene fluoride (PVDF) flexible composite films were fabricated by solution casting method. The transmission electron microscopy and scanning electron microscopy results show that the nano-particles is about 50 nm, PI is uniformly coated on the surface of BCZT nano-particles about 7–10 nm as well as there are uniform and improved dispersion in the matrix after modification. A series of dielectric properties were carried out. The results show the 50 vol% composites own a remarkably enhanced dielectric permittivity (εr?=?130) at 100 Hz. After modification, the breakdown strength has increased from 20 to 96 kV mm?1 and the loss tangent is reduced from 1.8 to 0.2 at 100 Hz compare with un-modified composites in 40 vol% dopant. With the increase of dopant, ferroelectricity of composites can be enhanced. The optimal residual polarization is 40 vol% PI@BCZT composites, which possess 1.025 μC/cm2 under 50 kV/mm external electric field. In addition, after modification, thermo-gravimetric analysis exhibits the degradation temperature Td5% and Td10% of PI@BCZT/PVDF composites can be enhanced about 5–10?°C and show better thermal stability than un-modified composites.  相似文献   

16.
This study investigated the effects of core–shell kaolin–metal oxide pigments on the rheological, physico-mechanical and dielectric properties of styrene–butadiene rubber composites. In this way, newly prepared core–shell pigments based on kaolin as the core representing 90% of the whole pigment was covered with different metal oxides (CaO, MgO and CaO⋅MgO) comprising the shell which represents only 10% of the prepared pigments were incorporated with different concentrations in styrene–butadiene (SBR) rubber composites. Studying the different properties of pigmented and unpigmented SBR composites were done. Scanning electron microscopy (SEM) was used to feature out the surface morphology. Addition of the new pigments increased the tensile strength and strain energy, while elastic modulus was decreased. This study revealed that there is a significant effect of the new prepared pigments on SBR properties and the optimum pigment loading was 40 phr for CaO/kaolin, while it was 2.5 phr for MgO/kaolin. The dielectric results also showed that, the values of ε′ (relative permittivity) and ε′′ (dielectric loss) increased with increasing core shell content. Moreover, the samples containing MgO/kaolin and MgO⋅CaO/kaolin showed promising dielectric properties with low relative permittivity and electrical insulating properties. The different measurements showed good agreement in their results.  相似文献   

17.
Novel all-organic polymer high-dielectric permittivity composites of polyaniline (PANI)/poly (vinylidene fluoride) (PVDF) were prepared by solution method and their dielectric and electric properties were studied over the wide ranges of temperatures and frequencies. To improve the interface bonding between two polymers, dodecylbenzenesulfonic acid (DBSA), a bulky molecule containing a polar head and a long non-polar chain was used both as a surfactant and as dopant in polyaniline (PANI) synthesis. Synthesized conducting PANI–DBSA particles were dispersed in poly(vinylidene fluoride) (PVDF) matrix to form an all-organic composite with different PANI–DBSA concentrations. Near the percolation threshold, the dielectric permittivity of the composites at 100 Hz frequency and room temperature was as high as 170, while the dielectric loss tangent value was as low as 0.9. Like typical percolation system, composites experienced high dielectric permittivity at low filler concentrations. However, their dielectric loss tangent was low enough to match with non-percolative ceramic filler-based polymer composites. Maximum electrical conductivity at 24 wt% of PANI–DBSA was mere 10?6 S/cm, a remarkably low value for percolative-type composites. Increase in the dielectric permittivity of the composites with increase in temperature from 25 to 115 °C for different PANI–DBSA concentrations was always in the same range of 50–60 %. However, the degree of increase in the electrical conductivity with the temperature was more prominent at low filler concentrations compared with high filler concentrations. Distinct electrical and their unique thermal dependence were attributed to an improved interface between the filler and the polymer matrix.  相似文献   

18.
This paper presents the development of epoxy-silica nanocomposites and characterized for dielectric properties. The effect of nanosilica loading (0–20 wt%), frequency, temperature and sea water aging on these properties was studied. Transmission electron microscopy (TEM) analysis of the samples showed an excellent dispersion. However, at higher silica loading TEM showed inter-contactity of the particles. The dielectric constant (ε′) increased with silica loading and reached an optimum at about 10 wt%. The ε′ of the nanocomposites showed linear decrease with frequency whereas AC conductivity (σ ac) increases. The σ ac and ε′ increased marginally with temperature and sea water aging.  相似文献   

19.
Lead-free ceramics based on bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT)–barium titanate (BaTiO3,BT) have been prepared by solid state reaction process. The (1?x)BNT–(x)BT (x = 0.01,0.03,0.05,0.07) ceramics were sintered at 1,150 °C for 4 h in air, show a pure perovskite structure. X-ray diffraction analysis indicates that a solid solution is formed in (1?x)BNT–(x)BT ceramics with presence of a morphotropic phase boundary (MPB) between rhombohedral and tetragonal at x = 0.07. Raman spectroscopy shows the splitting of (TO3) mode at x = 0.07 confirming the presence of MPB region. The temperature dependence dielectric study shows a diffuse phase transition with gradual decrease in phase transition temperature (Tm). The dielectric constant and diffusivity increases with increase in BT content and is maximum at the MPB region. With the increase in BT content the maximum breakdown field increases, accordingly the coercive field (Ec) and remnant polarization (Pr) increases. The piezoelectric constant of (1 ? x)BNT–(x)BT ceramics increases with increase in BT content and maximum at x = 0.07, which is the MPB region. The BNT–BT system is expected to be a new and promising candidate for lead-free dielectric and piezoelectric material.  相似文献   

20.
The AC electrical characteristics of polystyrene/Iron composites filled with iron particles of average sizes: 5, 40, 110 and 250 μm, have been investigated. The AC electrical properties were studied in frequency range (50 kHz–1 MHz), and temperature range (30–110 °C) using the impedance method. The AC-conductivity and dielectric constants were determined from the measured impedance data. It was found that the applied frequency, temperature, and iron particles size affect the electrical and dielectric properties of the composites. The AC-electrical conductivity is increasing with temperature. The dielectric constant and the dielectric loss of the composites increase with decreasing the iron particles size. The universal power-law of the electrical conductivity gives exponent with 0 < m < 1 characterizing hopping conduction. The small values of the activation energy indicate that the composite of smallest iron particle size, electrons can tunnel or hop more easily from the valence band to conduction energy band due to the reduction of interparticles separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号