首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A life cycle assessment (LCA) of one proposed method of hydrogen production – thermochemical water-splitting using the sulfur–iodine cycle couple with a very high-temperature nuclear reactor – is presented in this paper. Thermochemical water-splitting theoretically offers a higher overall efficiency than high-temperature electrolysis of water because heat from the nuclear reactor is provided directly to the hydrogen generation process, instead of using the intermediate step of generating electricity. The primary heat source for the S–I cycle is an advanced nuclear reactor operating at temperatures corresponding to those required by the sulfur–iodine process. This LCA examines the environmental impact of the combined advanced nuclear and hydrogen generation plants and focuses on quantifying the emissions of carbon dioxide per kilogram of hydrogen produced. The results are presented in terms of global warming potential (GWP). The GWP of the system is 2500 g carbon dioxide-equivalent (CO2-eq) per kilogram of hydrogen produced. The GWP of this process is approximately one-sixth of that for hydrogen production by steam reforming of natural gas, and is comparable to producing hydrogen from wind- or hydro-electric conventional electrolysis.  相似文献   

2.
A comprehensive life cycle assessment (LCA) is reported for five methods of hydrogen production, namely steam reforming of natural gas, coal gasification, water electrolysis via wind and solar electrolysis, and thermochemical water splitting with a Cu–Cl cycle. Carbon dioxide equivalent emissions and energy equivalents of each method are quantified and compared. A case study is presented for a hydrogen fueling station in Toronto, Canada, and nearby hydrogen resources close to the fueling station. In terms of carbon dioxide equivalent emissions, thermochemical water splitting with the Cu–Cl cycle is found to be advantageous over the other methods, followed by wind and solar electrolysis. In terms of hydrogen production capacities, natural gas steam reforming, coal gasification and thermochemical water splitting with the Cu–Cl cycle methods are found to be advantageous over the renewable energy methods.  相似文献   

3.
In this study, we present a comparative environmental impact assessment of possible hydrogen production methods from renewable and non-renewable sources with a special emphasis on their application in Turkey. It is aimed to study and compare the performances of hydrogen production methods and assess their economic, social and environmental impacts, The methods considered in this study are natural gas steam reforming, coal gasification, water electrolysis via wind and solar energies, biomass gasification, thermochemical water splitting with a Cu–Cl and S–I cycles, and high temperature electrolysis. Environmental impacts (global warming potential, GWP and acidification potential, AP), production costs, energy and exergy efficiencies of these eight methods are compared. Furthermore, the relationship between plant capacity and hydrogen production capital cost is studied. The social cost of carbon concept is used to present the relations between environmental impacts and economic factors. The results indicate that thermochemical water splitting with the Cu–Cl and S–I cycles become more environmentally benign than the other traditional methods in terms of emissions. The options with wind, solar and high temperature electrolysis also provide environmentally attractive results. Electrolysis methods are found to be least attractive when production costs are considered. Therefore, increasing the efficiencies and hence decreasing the costs of hydrogen production from solar and wind electrolysis bring them forefront as potential options. The energy and exergy efficiency comparison study indicates the advantages of biomass gasification over other methods. Overall rankings show that thermochemical Cu–Cl and S–I cycles are primarily promising candidates to produce hydrogen in an environmentally benign and cost-effective way.  相似文献   

4.
When comparing the life-cycle environmental performance of hydrogen energy systems, significant concerns arise due to potential methodological inconsistencies between case studies. In this regard, protocols for harmonised life cycle assessment (LCA) of hydrogen energy systems are currently available to mitigate these concerns. These protocols have already been applied to conventional hydrogen from steam methane reforming as well as to a large number of both fossil and renewable hydrogen options, allowing robust comparisons between them. However, harmonised life-cycle indicators of nuclear-based hydrogen options are not yet available in the literature. This study fills this gap by using the recently developed software GreenH2armony® to calculate the harmonised carbon, energy and acidification footprints of nuclear-based hydrogen produced through different pathways (viz., low-temperature electrolysis, high-temperature electrolysis, and thermochemical cycles). Overall, the harmonised case studies of nuclear-based hydrogen show a generally good performance in terms of carbon footprint and acidification, but an unfavourable performance in terms of non-renewable energy footprint.  相似文献   

5.
Ammonia is considered a sustainable energy storage medium with zero carbon content. In this work, thermal catalytic cracking of liquefied natural gas (LNG) at elevated temperatures employing concentrated solar tower is considered to produce clean hydrogen (CO2-free) and studied in terms of life cycle emissions. The generated hydrogen is utilized for clean ammonia synthesis in a Haber-Bosch reactor. The proposed system is initially assessed from a thermodynamic perspective, considering energy and exergy analyses emphasizing optimization of operating conditions. Then, the proposed system's life cycle assessment (LCA) is performed to analyze ammonia synthesis's environmental impacts. The aggregate environmental impact of the proposed system is quantified and compared with conventional production processes. Through the utilization of solar energy resources, ammonia production can be attained, avoiding high harmful emissions. The LCA study is carried out in GaBi software, and the selected impact assessment methodology is ReCiPe. The impact categories studied in this work are global warming potential (GWP), terrestrial acidification, human toxicity, and particulate matter formation potential. Considering 30 years of use phase and allocation, the predicted GWP is approximately 0.616 kg CO2 (eq.)/kg NH3, showing the potential to reduce up to 69.2% of the GWP compared to the global average value. Concerning human toxicity and fine particulate matter formation impact categories, the system produces about 3.32E-2 kg 1,4-DB (eq.) and 5.96E-4 kg PM2.5 (eq.), respectively, per kg NH3. The results are further analyzed by dominance, break-even, and variation analyses in detail.  相似文献   

6.
The production of hydrogen by methanol–water solution electrolysis was investigated. Hydrogen and carbon dioxide were contained in the cathode exhaust gas and the hydrogen concentration was 95.5–97.2 mol%. The hydrogen flow rate in the cathode exhaust gas increased in proportion to the current density and almost agreed with the theoretical hydrogen-production rate. The voltage and electrical energy needed to produce hydrogen were less than that for water electrolysis. The electrical energy needed in methanol–water solution electrolysis was less than 60% of that required in water electrolysis. Permeation of methanol, water and carbon dioxide from the anode to the cathode of the electrolytic cell occurred with hydrogen production. The permeation rate of methanol became greater than that of water as the current density increased. When the current density was constant, the permeation rate of water did not depend on the methanol concentration in the methanol–water solution supplied to the anode, and that of methanol increased while that of carbon dioxide decreased as the methanol concentration increased.  相似文献   

7.
We demonstrate that the energy efficiency of hydrogen production by electrochemical hydrogen pumping out of a plasma-energized mixture of water vapor and sulfur dioxide (SO2) can be greatly enhanced by raising the rector temperature above 800 °C. The critical elements for this reactor design include the use of a microporous ceramic configuration for the discharge region, a bipolar electrode connecting the plasma reactor with the hydrogen pump, and a solid oxide membrane as the electrolyte of the pump. The amount of hydrogen produced per 100 joules of electrical energy consumed to operate the reactor at 850 °C is 16 mL, which is more than twice the volume produced from the same reactor, operating at 100 °C. The energy efficiency is almost 75% of that for the electrolysis of an H2O/SO2 mixture. This type of plasma-assisted hydrogen pump opens up the possibility of producing hydrogen gas from water using the thermal energy from a nuclear reactor.  相似文献   

8.
Microbial electrolysis is a new technology for the production of value-added products, such as gaseous biofuels, from waste organic substrates. This study describes the performance of a methane-producing microbial electrolysis cell (MEC) operated at ambient temperature with a Geobacter sulfurreducens microbial bioanode and a methanogenic microbial biocathode. The cell was initially operated at a controlled cathode potential of −850 mV (vs. standard hydrogen electrode, SHE) in order to develop a methanogenic biofilm capable of reducing carbon dioxide to methane gas using abiotically produced hydrogen gas or directly the polarized electrode as electron donors. Subsequently, G. sulfurreducens was inoculated at the anode and the MEC was operated at a controlled anode potential of +500 mV, with acetate serving as electron donor. The rate of methane production at the cathode was found to be primarily limited by the acetate oxidation kinetics and in turn by G. sulfurreducens concentration at the anode of the MEC. Temperature had also a main impact on acetate oxidation kinetics, with an apparent activation energy of 58.1 kJ mol−1.  相似文献   

9.
Biomass steam gasification could be an attractive option for sustainable hydrogen production. Biomass, regarded as carbon neutral emitter, could be claimed as carbon negative emitter if carbon dioxide produced is captured and not allowed to emit to the environment during the process. Thus here an experimental study is carried out to find out the potential of hydrogen production from steam gasification of biomass in presence of sorbent CaO and effect of different operating parameters (steam to biomass ratio, temperature, and CaO/biomass ratio). Product gas with hydrogen concentration up to 54.43% is obtained at steam/biomass = 0.83, CaO/biomass = 2 and T = 670 °C. A drop of 93.33% in carbon dioxide concentration was found at CaO/biomass = 2 as compared to the gasification without CaO. Mathematical model based on Gibbs free energy minimization has been developed and is compared with the experimental results.  相似文献   

10.
Hydrogen can play a key role in decarbonizing industrial and transportation processes. As the European demand for hydrogen rises, several EU member states have been looking into ways to import remotely-produced hydrogen (H2) to fulfill their local needs. This cradle-to-gate LCA study assesses the H2 production in Iceland using local renewable energy sources, including the transport to potential gates in Austria and Belgium and compares it with locally produced H2 at the European sites. Our results indicate that the Global Warming Potential (GWP) of H2 production depends primarily on the energy mix, while transportation of H2 generates a minor impact. Furthermore, in its current state, H2 production in Iceland through Polymer electrolyte membrane electrolysis (PEM-EC) yields over 13- and 21 times lower GHG emissions compared respectively to Austria and Belgium. Based on these results, we conclude that remotely produced hydrogen can play an important part in decarbonizing European carbon-intensive industries.  相似文献   

11.
In this study, nuclear energy based hydrogen and ammonia production options ranging from thermochemical cycles to high-temperature electrolysis are comparatively evaluated by means of the life cycle assessment (LCA) tool. Ammonia is produced by extracting nitrogen from air and hydrogen from water and reacting them through nuclear energy. Since production of ammonia contributes about 1% of global greenhouse gas (GHG) emissions, new methods with reduced environmental impacts are under close investigation. The selected ammonia production systems are (i) three step nuclear Cu–Cl thermochemical cycle, (ii) four step nuclear Cu–Cl thermochemical cycle, (iii) five step nuclear Cu–Cl thermochemical cycle, (iv) nuclear energy based electrolysis, and (v) nuclear high temperature electrolysis. The electrolysis units for hydrogen production and a Haber–Bosch process for ammonia synthesis are utilized for the electrolysis-based options while hydrogen is produced thermochemically by means of the process heat available from the nuclear power plants for thermochemical based hydrogen production systems. The LCA results for the selected ammonia production methods show that the nuclear electrolysis based ammonia production method yields lower global warming and climate change impacts while the thermochemical based options yield higher abiotic depletion and acidification values.  相似文献   

12.
A new system is proposed for the treatment of waste aluminium. The total exergy loss (EXL) in the system for the co-production of 1 kg of hydrogen at 30 MPa and 26 kg of aluminium hydroxide is evaluated from the viewpoint of life cycle assessment (LCA) by comparison with the EXLs in conventional systems. The exergy flow diagram reveals that the exergy of waste aluminium, which contains only 15 mass% metal, is still large, while that of pure aluminium hydroxide is relatively small. Therefore, the EXL in the proposed system (150.9 MJ) is 55% less than that in the conventional system (337.7 MJ) in which the gas compressor and production of aluminium hydroxide consume significantly more exergy. The results also indicate that exergy analysis should be applied to the LCA as a critical measure for practical use, in addition to the conventional LCA of carbon dioxide emission.  相似文献   

13.
This paper investigates various usages of natural gas (NG) as an energy source for different hydrogen production technologies. A comparison is made between the different methods of hydrogen production, based on the total amount of natural gas needed to produce a specific quantity of hydrogen, carbon dioxide emissions per mole of hydrogen produced, water requirements per mole of hydrogen produced, and a cost sensitivity analysis that takes into account the fuel cost, carbon dioxide capture cost and a carbon tax. The methods examined are the copper–chlorine (Cu–Cl) thermochemical cycle, steam methane reforming (SMR) and a modified sulfur–iodine (S–I) thermochemical cycle. Also, an integrated Cu–Cl/SMR plant is examined to show the unique advantages of modifying existing SMR plants with new hydrogen production technology. The analysis shows that the thermochemical Cu–Cl cycle out-performs the other conventional methods with respect to fuel requirements, carbon dioxide emissions and total cost of production.  相似文献   

14.
Hydrogen production via steam electrolysis may involve less electrical energy consumption than conventional low temperature water electrolysis, reflecting the improved thermodynamics and kinetics at elevated temperatures. The present paper reports on the development of a one-dimensional dynamic model of a cathode-supported planar intermediate temperature solid oxide electrolysis cell (SOEC) stack. The model, which consists of an electrochemical model, a mass balance, and four energy balances, is here employed to study the steady state behaviour of an SOEC stack at different current densities and temperatures. The simulations found that activation overpotentials provide the largest contributions to irreversible losses while concentration overpotentials remained negligible throughout the stack. For an average current density of 7000 A m−2 and an inlet steam temperature of 1023 K, the predicted electrical energy consumption of the stack is around 3 kW h per normal m3 of hydrogen, significantly smaller than those of low temperature stacks commercially available today. However, the dependence of the stack temperature distribution on the average current density calls for strict temperature control, especially during dynamic operation.  相似文献   

15.
A consideration of the economic viability of hydrogen fuel production is important in the STEP (Solar Thermal Electrochemical Photo) production of hydrogen fuel. STEP is an innovative way to decrease costs and increase the efficiency of hydrogen fuel production, which is a synergistic process that can use concentrating photovoltaics (CPV) and solar thermal energy to drive a high temperature, low voltage, electrolysis (water-splitting), resulting in H2 at decreased energy and higher solar efficiency. This study provides evidence that the STEP system is an economically viable solution for the production of hydrogen. STEP occurs at both higher electrolysis and solar conversion efficiencies than conventional room temperature photovoltaic (PV) generation of hydrogen. This paper probes the economic viability of this process, by comparing four different systems: (1) 10% or (2) 14% flat plate PV driven aqueous alkaline electrolysis H2 production, (3) 25% CPV driven molten electrolysis H2 production, and (4) 35% CPV driven solid oxide electrolysis H2 production. The molten and solid oxide electrolysers are high temperature systems that can make use of light, normally discarded, for heating. This significantly increases system efficiency. Using levelized cost analysis, this study shows significant cost reduction using the STEP system. The total price per kg of hydrogen is shown to decrease from $5.74 to $4.96 to $3.01 to $2.61 with the four alternative systems. The advanced STEP plant requires less than one seventh of the land area of the 10% flat cell plant. To generate the 216 million kg H2/year required by 1 million fuel cell vehicles, the 35% CPV driven solid oxide electrolysis requires a plant only 9.6 mi2 in area. While PV and electrolysis components dominate the cost of conventional PV generated hydrogen, they do not dominate the cost of the STEP-generated hydrogen. The lower cost of STEP hydrogen is driven by residual distribution and gate costs.  相似文献   

16.
Life cycle assessment (LCA) of slow pyrolysis biochar systems (PBS) in the UK for small, medium and large scale process chains and ten feedstocks was performed, assessing carbon abatement and electricity production. Pyrolysis biochar systems appear to offer greater carbon abatement than other bioenergy systems. Carbon abatement of 0.7–1.3 t CO2 equivalent per oven dry tonne of feedstock processed was found. In terms of delivered energy, medium to large scale PBS abates 1.4–1.9 t CO2e/MWh, which compares to average carbon emissions of 0.05–0.30 t CO2e/MWh for other bioenergy systems. The largest contribution to PBS carbon abatement is from the feedstock carbon stabilised in biochar (40–50%), followed by the less certain indirect effects of biochar in the soil (25–40%)—mainly due to increase in soil organic carbon levels. Change in soil organic carbon levels was found to be a key sensitivity. Electricity production off-setting emissions from fossil fuels accounted for 10–25% of carbon abatement. The LCA suggests that provided 43% of the carbon in the biochar remains stable, PBS will out-perform direct combustion of biomass at 33% efficiency in terms of carbon abatement, even if there is no beneficial effect upon soil organic carbon levels from biochar application.  相似文献   

17.
On-board hydrogen storage and production via ammonia electrolysis was evaluated to determine whether the process was feasible using galvanostatic studies between an ammonia electrolytic cell (AEC) and a breathable proton exchange membrane fuel cell (PEMFC). Hydrogen-dense liquid ammonia stored at ambient temperature and pressure is an excellent source for hydrogen storage. This hydrogen is released from ammonia through electrolysis, which theoretically consumes 95% less energy than water electrolysis; 1.55 Wh g−1 H2 is required for ammonia electrolysis and 33 Wh g−1 H2 for water electrolysis. An ammonia electrolytic cell (AEC), comprised of carbon fiber paper (CFP) electrodes supported by Ti foil and deposited with Pt-Ir, was designed and constructed for electrolyzing an alkaline ammonia solution. Hydrogen from the cathode compartment of the AEC was fed to a polymer exchange membrane fuel cell (PEMFC). In terms of electric energy, input to the AEC was less than the output from the PEMFC yielding net electrical energies as high as 9.7 ± 1.1 Wh g−1 H2 while maintaining H2 production equivalent to consumption.  相似文献   

18.
Electrolysis of black liquor, an effluent from paper industry, was carried out and compared with alkaline water electrolysis. Energy efficiency in terms of HHV of hydrogen was found in the range of 84–97% whereas under similar conditions alkaline water electrolysis could not give more than 66% efficiency. Hydrogen evolution in black liquor electrolysis was possible even at an inter electrode potential of 1.17 V but in alkaline water electrolysis there was no hydrogen production below an inter electrode potential of 1.31 V. In addition to this, alkali lignin, amounting to 28–46 mg/mg of hydrogen produced, was separated at anode during black liquor electrolysis, which, on account of its good calorific value, has the potential of significantly improving the overall energy efficiency of the process.  相似文献   

19.
Electricity generation via direct conversion of solar energy with zero carbon dioxide emission is essential from the aspect of energy supply security as well as from the aspect of environmental protection. Therefore, this paper presents a system for hydrogen production via water electrolysis using a 960 Wp solar power plant. The results obtained from the monitoring of photovoltaic modules mounted in pairs on a fixed, a single-axis and a dual-axis solar tracker were examined to determine if there is a possibility to couple them with an electrolyzer. Energy performance of each photovoltaic system was recorded and analyzed during a period of one year, and the data were monitored on an online software service. Estimated parameters, such as monthly solar irradiance, solar electricity production, optimal angle, monthly ambient temperature, and capacity factor were compared to the observed data. In order to get energy efficiency as high as possible, a novel alkaline electrolyzer of bipolar design was constructed. Its design and operating UI characteristic are described. The operating UI characteristics of photovoltaic modules were tuned to the electrolyzer operating UI characteristic to maximize production. The calculated hydrogen rate of production was 1.138 g per hour. During the study the system produced 1.234 MWh of energy, with calculated of 1.31 MWh , which could power 122 houses, and has offset 906 kg of carbon or an equivalent of 23 trees.  相似文献   

20.
A novel thermal plasma process was developed, which enables economically viable commercial-scale hydrogen and carbon black production. Key aspects of this process are detailed in this work. Selectivity and yield of both solid, high-value carbon and gaseous hydrogen are given particular attention. For the first time, technical viability is demonstrated through lab scale reactor data which indicate methane feedstock conversions of >99%, hydrogen selectivity of >95%, solid recovery of >90%, and the ability to produce carbon particles of varying crystallinity having the potential to replace traditional furnace carbon black. The energy intensity of this process was established based on real-time operation data from the first commercial plant utilizing this process. In its current stage, this technology uses around 25 kWh per kg of H2 produced, much less than water electrolysis which requires approximately 60 kWh per kg of H2 produced. This energy intensity is expected to be reduced to 18–20 kWh per kg of hydrogen with improved heat recovery and energy optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号