首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peat is a promising raw material for synthetic liquid fuel production. Raw peat with moisture content 85–95 wt% can be liquefied without preliminary drying. It may be treated with CO at an initial pressure of 5.5–8.3 MPa and at a temperature of 300–350 °C in the presence of K2CO3. Dewatering and liquefaction take place simultaneously. The peat conversion and the bitumen yield depend strongly on the chosen input material and the operating conditions. The inorganic mineral matter in the peat may also affect the process. Well-humified peat is a suitable raw material for the process with regard to bitumen yield. Some medium-humified peats can also be converted into bitumen in high yield. The process requires no, or low, consumption of CO. The presence of a catalyst is not always needed.  相似文献   

2.
The effects of reaction gases including CO2 and H2O and temperature on the selective low-temperature oxidation of CO were studied in hydrogen rich streams using a flow micro-reactor packed with a Pt–SnO2/Al2O3 sol–gel catalyst that was initially designed and optimized for operation in the absence of CO2 and H2O. 100% CO conversion was achieved over the 1 wt% Pt–3 wt% SnO2/Al2O3 catalyst at 110 °C using a feed composition of 1.0% CO, 1.5% O2, 25% CO2, 10% H2O, 58% H2 and He as balance at a space velocity of 24,000 cm3/(g h). CO2 in the feed was found to decrease CO conversion significantly while the presence of H2O in the feed increased CO conversion, balancing the effect of CO2.  相似文献   

3.
This article deals with a study of bitumen conversion (the gross-formula CH1.47N0.01S0.007) in a supercritical water (SCW) flow continuously supplied at the bottom of the vertically located tubular reactor. At the first stage, bitumen was continuously supplied from the top of the reactor into a counter-current SCW flow (400 °C, 30 MPa) for 60 min. At the second stage (after ceasing the supply of bitumen into the reactor), SCW was pumped through the layer of bitumen residue at uniform (2.5 °C/min) temperature increase from 400 to 700 °C at 30 MPa. The amount and composition of the liquid and volatile conversion products were measured. It is revealed that during bitumen supply into the reactor and subsequent pumping of SCW through the layer of bitumen residue in the temperature increasing mode from 400 to 500 °C, the yields of liquid conversion products are equal to 26.9 and 45.4%, respectively, relative to the weight of bitumen supplied into the reactor. Oils are the major components of these liquid products. Participation of H2O molecules in redox reactions became evident due to the formation of CO and CO2 even at 400 °C. A significant increase in the yields of H2, CH4, and CO2 are detected at T > 600 °C. Based on the sulfur balance, it can be stated that the degree of bitumen desulfurization at 400–700 °C due to sulphur removal in form of H2S accounts for 21.6 wt.% A solid carbonaceous bitumen residue, obtained after SCW conversion, is characterized by high specific surface (224 m2/g).  相似文献   

4.
Integrated CO2 capture and conversion (ICCC) into valuable chemicals such as CH4 and CO is a promising approach to mitigate anthropogenic CO2 emissions. In this work, we prepared a series of metal oxide (MxOy, M = Mg, Al, Mn, Y, Zr, La, and Ce)-doped Ni/CaO dual-function materials (DFMs) and applied them to the ICCC process. The property–performance relationship of the DFMs was studied, and the conversion mechanism of the captured CO2 was explored. For any DFM at any ICCC cycle (20 cycles in total), the CO2 captured at the carbonation stage was completely released as CH4, CO, and CO2 at the conversion stage. Among all DFMs, Ni/CaZr(O) showed the best ICCC performance because of its good thermal stability. The conversion of captured CO2 on the DFMs proceeded via a two-step mechanism, where CO2 was first released from CaCO3 and then converted into CH4 at Ni sites and CO at CaO sites.  相似文献   

5.
6.
The effect of CO conversion on hydrocarbon selectivities (i.e., CH4, C5+, olefin and paraffin), H2/CO usage ratios, CO2 selectivity, and catalyst stability over a wide range of CO conversion (12?C94%) on 0.27%Ru?C25%Co/Al2O3 catalyst was studied under the conditions of 220 °C, 1.5 MPa, H2/CO feed ratio of 2.1 and gas space velocities of 0.3?C15 NL/g-cat/h in a 1-L continuously stirred tank reactor (CSTR). Catalyst samples were withdrawn from the CSTR at different CO conversion levels, and Co phases (Co, CoO) in the slurry samples were characterized by XANES, and in the case of the fresh catalysts, EXAFS as well. Ru was responsible for increasing the extent of Co reduction, thus boosting the active site density. At 1%Ru loading, EXAFS indicates that coordination of Ru at the atomic level was virtually solely with Co. It was found that the selectivities to CH4, C5+, and CO2 on the Co catalyst are functions of CO conversion. At high CO conversions, i.e. above 80%, CH4 selectivity experienced a change in the trend, and began to increase, and CO2 selectivity experienced a rapid increase. H2/CO usage ratio and olefin content were found to decrease with increasing CO conversion in the range of 12?C94%. The observed results are consistent with water reoxidation of Co during FTS at high conversion. XANES spectroscopy of used catalyst samples displayed spectra consistent with the presence of more CoO at higher CO conversion levels.  相似文献   

7.
Pt/Ce—ZrO2 catalysts have been designed and applied to selective CO oxidation at low temperature. Both tetragonal and cubic phase Ce—ZrO2 supports were prepared by co-precipitation method to get high surface area materials after calcination at 500 °C for 6 h in air. Selective CO oxidation was conducted using stoichiometric amounts of O2. Cubic Ce—ZrO2 supported Pt catalyst exhibited 78% CO conversion and 96% CO2 selectivity even at 60 °C, while Pt/Al2O3 catalyst showed less than l% CO conversion at the same condition. The higher CO conversion and CO2 selectivity (to CO2 as opposed to H2O) of Pt/Ce—ZrO2 catalyst is mainly due to the high oxygen storage capacity of Ce—ZrO2 and nano-crystalline nature of cubic Ce0.8Zr0.2O2.  相似文献   

8.
The performance of catalytic tri-reforming under industrially relevant situations (e.g., pellet catalysts, pressurized reactor) was investigated using surrogate biogas as the feedstock. Tri-reforming using Ni/Mg/Ce0.6Zr0.4O2/Al2O3 pellet catalysts was studied in a bench scale fixed-bed reactor. The feed molar ratio for CH4:CO2:air was fixed as 1.0:0.70:0.95. The effects of temperature (800–860°C), pressure (1–6?bar), and H2O/CH4 molar feed ratio (0.23–0.65) were examined. Pressure has substantial impact on the reaction and transport rates and equilibrium conversions, making it a key variable. At 860°C, CO2 conversion increased from 4 to 61% and H2/CO molar ratio decreased from 2.0 to 1.1 as the pressure changed from 1 to 6?bar. CO2 conversion and H2/CO molar ratio were also influenced by the temperature and H2O/CH4 molar ratio. At 3?bar, CO2 conversion varied between 4 and 43% and the H2/CO molar ratio varied between 1.2 and 1.9 as the temperature changed from 800 to 860°C. At 3?bar and 860°C, CO2 conversion decreased from 35 to 8% and H2/CO molar ratio increased from 1.7 to 2.4 when the H2O/CH4 molar ratio was increased from 0.23 to 0.65. This work demonstrates that the tri-reforming technology is feasible for converting biogas under scaled-up conditions in a fixed-bed reactor.  相似文献   

9.
The influence of CO2 on the deactivation of Co/γ-Al2O3 Fischer–Tropsch (FT) catalyst in CO hydrogenation has been investigated. The presence of CO2 in the feed stream reveals a negative effect on catalyst stability and in the formation of heavy hydrocarbons. The CO2 acts as a mild oxidizing agent on cobalt metal during Fischer–Tropsch synthesis. During FT synthesis on Co/γ-Al2O3 of 70 h, the CO conversion and C5+ selectivity in the presence of CO2 decreased more significantly than in the absence of CO2. CO2 is found to be responsible for the partial oxidation of surface cobalt metal at FT synthesis environment with the co-existence of generated water.  相似文献   

10.
This paper presents new data for the viscosity, density and gas solubility of Cold Lake bitumen saturated with light gases and gas mixtures over a temperature range of 15 to 103°C at up to 10 MPa pressure. Specifically, the gases whose effects on the bitumen properties were measured are N2, CH4, CO2 and C2H6, and two mixtures of CO2 and CH4. With CO2 and C2H6, experiments were also performed in the liquid-liquid region, and the results of these experiments generally agree with the previously published predictions. The viscosity of the gas-free Cold Lake bitumen is comparable to that of a Marguerite Lake bitumen that was tested previously. Due to the large solubilities of C02 and C2H6, the reduction in gas-saturated bitumen viscosity is quite dramatic. The density of the gas-saturated bitumen decreases with increased amounts of the dissolved CH4 and C2H6 gases, but no such trends are evident for the N2 and CO2 gases. The results of the experiments with two binary gas mixtures (i.e., CO2 and CH4) indicate that the bitumen properties are affected largely by the major gas constituent.  相似文献   

11.
The oxidation reaction kinetics of bitumen from Athabasca oil sands have been investigated in a flow-through fixed bed reactor using gas mixtures of various compositions. The system was modelled as an isothermal integral plug-flow reactor. The oxidation of bitumen was found to be first order with respect to oxygen concentration. Two models were examined to describe the kinetics of bitumen oxidation. In the first, the Athabasca bitumen is considered to be a single reactant and the oxidation reaction a single irreversible reaction. The activation energy for the overall reaction was found to be 80 kJ mol?1. This model is limited to calculating the overall conversion of oxygen. Because the fraction of oxygen reacting to form carbon monoxide and carbon dioxide increases with temperature, a more sophisticated model was proposed to take this into account. The second model assumes that the bitumen is a single reactant and that the oxidation of bitumen may be described by two simultaneous, parallel reactions, one producing oxygenated hydrocarbons and water, the other producing CO and CO2. The activation energy for the first reaction was found to be 67 kJ mol?1, and for the second, 145 kJ mol?1. This more sophisticated model explains the result that at higher temperatures more oxygen is consumed in the oxidation of carbon, because this reaction has a higher activation energy than the reaction leading to the production of oxygenated hydrocarbons and water. This model can also predict the composition of the product gases at various reaction conditions.  相似文献   

12.
Hydroformylation of cyclohexene was studied with a catalyst system of Ru3(CO)12 and LiCl using H2 and CO2 instead of CO in NMP. The influence of H2 and CO2 pressures on the total conversion and the product distribution was examined. It was shown that increasing total pressure of H2 and CO2 promoted the reverse water gas shift reaction and increased the yield of cyclohexanecarboxaldehyde. Its hydrogenation to cyclohexanemethanol was promoted with increasing H2 pressure but suppressed with increasing CO2 pressure. Cyclohexane was also formed along with those products and this direct hydrogenation was suppressed with increasing CO2 pressure. The roles of CO2 as a promoter as well as a reactant were further examined by phase behavior observations and high pressure FTIR measurements.  相似文献   

13.

Abstract  

Fischer–Tropsch synthesis was carried out over precipitated iron-based catalysts with different amounts of CO2 in the feed stream while maintaining both total reaction pressure (1.5 MPa) and partial pressure of H2 + CO (0.75 MPa) using an inert balance gas, N2. The CO2 in the feed stream decreased the rate of hydrocarbon formation, but it had no significant influence on the carbon number distribution of hydrocarbons. The CO2 in the feed stream also suppressed CO2 formation, decreasing both CO conversion and CO2 selectivity. We attribute the decreased reaction rate to the partial competition in the adsorption behavior between CO and CO2 as revealed in the temperature-programmed desorption.  相似文献   

14.
Characteristics of CO2 hydrogenation were investigated in a fluidized bed reactor (0.052 m IDxl.5 m in height). Coprecipitated Fe-Cu-K-Al catalyst (dρ=75–90 Μm) was used as a fluidized solid phase. It was found that the CO2 conversion decreases but the CO selectivity increases, whereas the space-time-yield attains maximum values with increasing gas velocity. The CO2 conversion has increased, but CO selectivity has decreased with increasing hydrogenation temperature, pressure or H2/CO2 ratio in the fluidized bed reactor. Also, the CO, conversion and olefin selectivity appeared to be higher in the fluidized bed reactor than those of the fixed bed reactor. Presented at the Int’l Symp. on Chem. Eng. (Cheju, Feb. 8–10, 2001), dedicated to Prof. H. S. Chun on the occasion of his retirement from Korea University  相似文献   

15.
The phase behaviour of Cold Lake bitumen and its five fractions (or “cuts”) saturated with carbon dioxide is examined. The two lightest fractions (bp < 510°C) were clear liquids, whereas the third and fourth fractions were dark and viscous, i.e. much like the whole bitumen. The fifth fraction was a glass-like solid, with a softening temperature of approximately 100°C. The vapour-liquid equilibrium (VLE) data for the bitumen and bitumen fractions saturated with CO2 were collected at temperatures from 25 to 150°C and pressures up to 10 MPa. Experiments were also performed at conditions under which pure CO2 exists as a liquid. The VLE and LLE data were correlated with the Peng-Robinson equation of state by modeling each bitumen fraction as one pseudocomponent whose critical properties and acentric factor were estimated from correlations available in the literature. The CO2-solubility and density data were used to develop generalized correlations for the critical pressure and the binary interaction parameter (kij) in terms of molar mass and critical temperature. The model was subsequently used to predict the solubility of CO2 in the whole bitumen which was represented as a 5-component mixture. A correlation for Cut i-Cut j binary interaction parameter (kij) was developed in terms of temperature and the difference in hydrocarbon molar masses. The average deviation in the predicted and experimental CO2-solubility in the whole Cold Lake bitumen was less than 7%.  相似文献   

16.
The hydrogenation of CO2 to hydrocarbons over a precipitated Fe-Cu-Al/K catalyst was studied in a slurry reactor for the first time. Reducibility of the catalyst and effect of reaction variables (temperature, pressure and H2/CO2 ratio of the feed gas) on the catalytic reaction performance were investigated. The reaction results indicated that the Fe-Cu-Al/K catalyst showed a good CO2 hydrogenation performance at a relatively low temperature (533 K). With the increase of reaction temperature CO2 conversion and olefin to paraffin (O/P) ratio in C2-C4 hydrocarbons as well as the selectivity to C2-C4 fraction increased, while CO and CH4 selectivity showed a reverse trend. With the increase in reaction pressure, CO2 conversion and the selectivity to hydrocarbons increased, while the CO selectivity and O/P ratio of C2-C4 hydrocarbons decreased. The investigation of H2/CO2 ratio revealed that CO2 conversion and CH4 selectivity increased while CO selectivity and O/P ratio of C2-C4 decreased with increasing H2/CO2 ratio.  相似文献   

17.
Various dehydration catalysts were studied in the synthesis of dimethyl ether (DME) directly from carbon-monoxide-rich synthesis gas under a series of different reaction conditions. The investigated catalyst systems consisted of combinations of a methanol catalyst (CuO/ZnO system) with catalysts for methanol dehydration based on γ-Al2O3 or zeolites and γ-Al2O3 was identified as the most favorable dehydration catalyst. Various reaction parameters such as temperature, H2/CO ratio and space velocity were studied. The impact of water on Cu/ZnO/Al2O3-γ-Al2O3 catalysts was investigated and no deactivation could be observed at water contents below 10% during running times of several hours. A running time of several days and a water content of 10% led to a significant increase of CO conversion but the water gas shift reaction became dominating and CO2 was the main product. After termination of water feeding significant deactivation of the catalyst system was observed but the system returned to high DME selectivity. Catalyst stability and the influence of CO2 in the gas feed were studied in experiments lasting for about three weeks. The presence of 8% of CO2 caused an approximately 10% lower CO conversion and an about 5% lower DME selectivity compared to the reaction system without CO2.  相似文献   

18.
Selective methanation of CO over supported Ru catalysts   总被引:1,自引:0,他引:1  
The catalytic performance of supported ruthenium catalysts for the selective methanation of CO in the presence of excess CO2 has been investigated with respect to the loading (0.5–5.0 wt.%) and mean crystallite size (1.3–13.6 nm) of the metallic phase as well as with respect to the nature of the support (Al2O3, TiO2, YSZ, CeO2 and SiO2). Experiments were conducted in the temperature range of 170–470 °C using a feed composition consisting of 1%CO, 50% H2 15% CO2 and 0–30% H2O (balance He). It has been found that, for all catalysts investigated, conversion of CO2 is completely suppressed until conversion of CO reaches its maximum value. Selectivity toward methane, which is typically higher than 70%, increases with increasing temperature and becomes 100% when the CO2 methanation reaction is initiated. Increasing metal loading results in a significant shift of the CO conversion curve toward lower temperatures, where the undesired reverse water–gas shift reaction becomes less significant. Results of kinetic measurements show that CO/CO2 hydrogenation reactions over Ru catalysts are structure sensitive, i.e., the reaction rate per surface metal atom (turnover frequency, TOF) depends on metal crystallite size. In particular, for Ru/TiO2 catalysts, TOFs of both CO (at 215 °C) and CO2 (at 330 °C) increase by a factor of 40 and 25, respectively, with increasing mean crystallite size of Ru from 2.1 to 4.5 nm, which is accompanied by an increase of selectivity to methane. Qualitatively similar results were obtained from Ru catalysts supported on Al2O3. Experiments conducted with the use of Ru catalyst of the same metal loading (5 wt.%) and comparable crystallite size show that the nature of the metal oxide support affects significantly catalytic performance. In particular, the turnover frequency of CO is 1–2 orders of magnitude higher when Ru is supported on TiO2, compared to YSZ or SiO2, whereas CeO2- and Al2O3-supported catalysts exhibit intermediate performance. Optimal results were obtained over the 5%Ru/TiO2 catalyst, which is able to completely and selectively convert CO at temperatures around 230 °C. Addition of water vapor in the feed does not affect CO hydrogenation but shifts the CO2 conversion curve toward higher temperatures, thereby further improving the performance of this catalyst for the title reaction. In addition, long-term stability tests conducted under realistic reaction conditions show that the 5%Ru/TiO2 catalyst is very stable and, therefore, is a promising candidate for use in the selective methanation of CO for fuel cell applications.  相似文献   

19.
Herein, we explore how OH groups on Pt/γ-AlOOH and Pt/γ-Al2O3 catalysts affect CO2 hydrogenation with H2 at temperatures from 250°C to 400°C. OH groups are abundant on γ-AlOOH, but rare at Pt-(γ-AlOOH) interface which is the most favorable site for CO2 conversion on Pt/γ-AlOOH. This makes CO2 hydrogenation on Pt/γ-AlOOH form CO weakly bonding to γ-AlOOH, which prefers to desorption from Pt/γ-AlOOH rather than further conversion, thus enhancing CO production on Pt/γ-AlOOH. Different from Pt/γ-AlOOH, OH groups are abundant at Pt-(γ-Al2O3) interface which is the most favorable site for CO2 conversion on Pt/γ-Al2O3. This promotes CO2 hydrogenation on Pt/γ-Al2O3 to form CO strongly bonding to Pt, which prefers to further hydrogenation to CH4, and thereby increases CH4 selectivity on Pt/γ-Al2O3. Therefore, the OH groups at metal-support interface are crucial factor influencing product distribution, and must be considered seriously when fabricating catalysts.  相似文献   

20.
The present work highlights the role of CO/CO2 co-feeding in the dehydrogenation of cyclohexanol to cyclohexanone over Cu–ZnO–Cr2O3 and Cu–ZnO–Cr2O3–La2O3 catalysts in the temperature range of 448–523 K at atmospheric pressure under vapor phase conditions. Both the catalysts are prepared by coprecipitation technique and are characterized by BET surface area, XRD, TPR and N2O pulse chemisorption under dynamic conditions. The co-feeding of CO/CO2 along with cyclohexanol results in enhanced conversion of cyclohexanol and additional formation of methanol. The hydrogen generated in the dehydrogenation of cyclohexanol to cyclohexanone promotes the methanol formation from CO/CO2. This is the first report where in methanol formation is observed at atmospheric pressure from CO/CO2 co-feeding in cyclohexanol dehydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号