首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
考察了三维编织碳纤维/芳纶纤维混杂增强铸型尼龙(简称HF/MCPA)复合材料的力学性能,着重分析了复合材料的冲击、剪切和弯曲性能。试验结果表明:碳纤维和芳纶纤维混杂复合材料不仅有较好的弯曲强度、剪切强度,同时冲击强度也很好。随着碳纤维体积分数的增加,混杂复合材料的冲击强度降低;横向剪切强度先增大后降低;纵向剪切强度逐渐增大,出现最大值;弯曲强度和模量随之提高,达到最大值后开始下降,最大值时CF∶KF为3∶2。  相似文献   

2.
分别研究了不同条件下连续C纤维和三维编织纤维增强铸型尼龙复合材料的摩擦磨损性能,并对磨痕和磨屑表面形貌进行了观察和分析.结果表明:干摩擦条件下三维编织C纤维增强铸型尼龙(简称C3D/MCPA)复合材料的磨损率明显低于连续C纤维增强铸型尼龙(简称CL/MCPA)复合材料;水润滑条件下C3D/MCPA复合材料的摩擦系数和磨损率几乎为干摩擦时的50%.三维编织C纤维/芳纶纤维混杂增强铸型尼龙(简称HF/MCPA)复合材料中随C纤维相对体积比的提高,磨损率下降而摩擦系数变化不大.  相似文献   

3.
利用层内混杂的方式制备碳/芳纶纤维混杂纬编双轴向多层衬纱织物,通过对材料进行拉伸、三点弯曲等实验研究该织物增强复合材料的力学性能及混杂比对其力学性能的影响。结果表明,按照一定的混杂比加入芳纶纤维后复合材料的拉伸性能提高,表现出积极的混杂效应。由于延伸性好的芳纶纤维的加入,使复合材料的拉伸断裂伸长率明显提高,材料破坏模式出现了完全脆性断裂模式(C12材料破坏形式)和“扫帚”形纤维断裂模式(C8A4,C6A6材料破坏形式)。此外,按照一定的混杂比加入芳纶纤维也有效改善了碳纤维增强复合材料的破坏韧性,碳/芳纶纤维混杂MBWK织物增强复合材料的弯曲强度和弯曲模量随混杂比的提高而呈下降趋势,当复合材料中芳纶含量从42%(体积分数,下同)(C6A6)到59.2%(C4A8)的变化过程中,弯曲强度和弯曲模量的降低率较高。0°试样在混杂比为59.2%(C4A8)时,弯曲挠度最大,达到7.49 mm,远高于纯芳纶纤维或纯碳纤维增强的复合材料。所有90°混杂复合材料试样的弯曲挠度均高于纯芳纶纤维或纯碳纤维增强的复合材料,表现出积极的混杂效应。  相似文献   

4.
樊威  李嘉禄 《复合材料学报》2015,32(5):1260-1270
为了探索增强体结构对碳纤维增强聚合物基复合材料(CF-PMCs)热氧老化后弯曲性能的影响,对三维四向编织碳纤维/环氧复合材料(简称为三维编织复合材料)和层合平纹碳布/环氧复合材料(简称为层合复合材料)的热氧老化性能进行了研究。利用FTIR、老化失重、弯曲测试和SEM等手段分析了热氧老化前后的试样。结果表明:热氧老化导致基体树脂的氧化断链以及纤维/基体界面结合力的退化是两种复合材料弯曲强度和弯曲模量下降的原因,弯曲强度比弯曲模量更容易受热氧老化的影响。在相同的热氧老化条件下,层合复合材料的热氧老化失重大于三维编织复合材料的,而三维编织复合材料的弯曲强度和弯曲模量保留率均大于层合复合材料的。在140℃下老化1 200h后,层合复合材料的弯曲强度和弯曲模量保留率分别为74.7%和88.3%,而对应的三维编织复合材料的分别为79.4%和91.5%。因此,采用三维编织预制件作为CF-PMCs的增强体是一种有效的提高其热氧稳定性的方法。  相似文献   

5.
碳纤维三维编织复合材料的结构对拉伸和弯曲性能的影响   总被引:9,自引:0,他引:9  
研究了碳纤维四步法三维四向、三维五向编织结构复合材料的拉伸和弯曲性能,以及结构参数-编织角的变化对其拉伸和弯曲性能的影响,并与层合复合材料作了对比性研究.结果表明,三维编织复合材料具有良好的力学性能,其拉伸强度可达810MPa、拉伸模量可达95.6GPa,弯曲强度可达829.03MPa、弯曲模量可达67.5GPa.同时,编织角和编织结构对复合材料性能有较大的影响.随着编织角的增大,复合材料的拉伸、弯曲强度和模量均减小;三维五向结构的拉伸、弯曲强度和模量均高于四向结构;在纤维体积含量相近的情况下,通过对编织角的设计,可以设计三维编织复合材料的性能.  相似文献   

6.
立体多向编织结构对复合材料性能的影响   总被引:21,自引:10,他引:11       下载免费PDF全文
本文采用1×1,1×2和1×3三种不同的编织结构对轴向增强和非增强三维多向编织复合材料的性能进行了研究。对编织复合材料的拉伸强度、刚度和弯曲强度、刚度进行了实验分析。结果表明;三维编织复合材料具有良好的性能。编织结构对复合材料性能有较大的影响。纤维表面编织角和纤维体积比是影响复合材料性能的重要结构参数。通过轴向加入非编织增强纤维,使编织复合材料的拉伸强度和模量,弯曲强度和模量有了较大改善。   相似文献   

7.
立体多向编织结构对复合材料性能的影响   总被引:6,自引:1,他引:5       下载免费PDF全文
本文采用1×1,1×2和1×3三种不同的编织结构对轴向增强和非增强三维多向编织复合材料的性能进行了研究。对编织复合材料的拉伸强度、刚度和弯曲强度、刚度进行了实验分析。结果表明;三维编织复合材料具有良好的性能。编织结构对复合材料性能有较大的影响。纤维表面编织角和纤维体积比是影响复合材料性能的重要结构参数。通过轴向加入非编织增强纤维,使编织复合材料的拉伸强度和模量,弯曲强度和模量有了较大改善。  相似文献   

8.
采用复合处理工艺对三维混杂超高分子量聚乙烯纤维/碳纤维编织体进行表面处理, 通过RTM工艺制备了环氧树脂基混杂复合材料(UHMWPE/CF/ER), 并研究了其力学性能及混杂效应。结果表明, 在纤维总体积分数一定的情况下, 随着超高分子量聚乙烯纤维/碳纤维混杂比的减小, 复合材料的弯曲强度、 弯曲模量及压缩强度增大, 而其纵向剪切强度及冲击韧性降低。三维编织混杂复合材料的断裂机制由混杂纤维的混杂比及其性质决定, 通过调节混杂比可实现对复合材料力学性能的有效调控。   相似文献   

9.
为提高芳纶纤维与复合材料基体间的界面强度,首先,使用LiCl乙醇溶液处理芳纶纤维一定时间;然后,对LiCl处理芳纶纤维表面的化学组成、微观形貌、单丝拉伸强度及芳纶纤维/环氧树脂复合材料的界面性能等进行了测试分析。结果表明:使用LiCl乙醇溶液处理芳纶纤维后,芳纶纤维表面的含氮官能团含量增加;处理后,芳纶纤维表面有刻蚀出的沟槽,表面粗糙度增大,进而改善了芳纶纤维与环氧树脂基体的界面粘接性能,使芳纶纤维/环氧树脂复合材料的层间剪切强度由处理前的21.75 MPa提升到37.98 MPa;最佳处理时间为3~4 h,而处理时间过长会导致芳纶纤维的单丝拉伸强度及复合材料的层间剪切强度下降。所得结论证实使用LiCl处理芳纶纤维是一种有效的表面改性方法。   相似文献   

10.
炭/炭复合材料高温力学行为研究   总被引:28,自引:12,他引:16  
借助三点弯曲试验和扫描电镜观察,对层压结构C C(2D)、三维整体编织结构C C(3D)在高温1700℃及室温下的弯曲力学行为进行了研究,总结了各自性能及损伤破坏的特点。试验结果表明:3DC C以纤维断裂的形式发生弯曲破坏,其弯曲强度、模量均远大于2DC C;对于2DC C,其弯曲破坏模式为基体的层间开裂,材料性能在很大程度上受到炭基体以及界面状态的控制;C C复合材料在高温下弯曲力学性能大幅提高,强度增加幅度高达45%以上,模量增加幅度达15.3%;高温下界面粘结强度增加,导致3DC C的损伤破坏模式有所变化。  相似文献   

11.
Hemp fibre reinforced unsaturated polyester composites (HFRUPE) were subjected to low velocity impact tests in order to study the effects of non-woven hemp fibre reinforcement on their impact properties. HFRUPE composites specimens containing 0, 0.06, 0.10, 0.15, 0.21 and 0.26 fibre volume fractions (Vf) were prepared and their impact response compared with samples containing an equivalent fibre volume fraction of chopped strand mat E-glass fibre reinforcement. Post-impact damage was assessed using scanning electron microscopy (SEM). A significant improvement in load bearing capability and impact energy absorption was found following the introduction hemp fibre as reinforcement. The results indicate a clear correlation between fibre volume fractions, stiffness of the composite laminate, impact load and total absorbed energy. Unreinforced unsaturated polyester control specimens exhibited brittle fracture behaviour with a lower peak load, lower impact energy and less time to fail than hemp reinforced unsaturated polyester composites. The impact test results show that the total energy absorbed by 0.21 fibre volume fraction (four layers) of hemp reinforced specimens is comparable to the energy absorbed by the equivalent fibre volume fraction of chopped strand mat E-glass fibre reinforced unsaturated polyester composite specimens.  相似文献   

12.
A study has been carried out to investigate the tensile, flexural and dielectric properties of composites made by reinforcing vakka as a new natural fibre into a polyester resin matrix. The fibres extracted by retting and manual processes have been used to fabricate the composites. These composites are tested for tensile, flexural and dielectric properties and compared with those of established composites like sisal, bamboo and banana made under the same laboratory conditions. The composites are fabricated up to a maximum volume fraction of fibre of 0.37 in the case of tensile testing, and 0.39 for flexural and dielectric testing. It has been observed that the tensile properties increase with respect to volume fraction of fibre for vakka fibre composite and are also more than those of sisal and banana composites and comparable to those of bamboo composites. The flexural strength of vakka fibre composite is more than that of banana composite and is closer to sisal fibre composite with respect to the volume fraction of fibre, where as the flexural modulus is much higher than those of banana and sisal fibre composites and also very much closer to bamboo fibre composites. The dielectric strength of vakka fibre composite increases with increase in volume fraction of fibre in the composite unlike the case of sisal, bamboo and banana composites. The dielectric strength being a unique feature of vakka fibre composite, can be suggested for electrical insulation applications.  相似文献   

13.
The effects of fibre/matrix bonding, fabric density, fibre volume fraction and bundle size on microstructure, mechanical properties and failure mechanisms in carbon fibre reinforced composites (plastic and carbon matrix) have been investigated. The microstructure of unloaded and cracked samples was studied by optical microscopy and scanning electron microscopy (SEM), respectively whereas the mechanical behaviour was examined by 3- point bending experiments. Exclusively one type of experimental resole type phenolic resin was applied. A strong fibre/matrix bonding, which is needed for high strength of carbon fibre reinforced plastic (CFRP) materials leads to severe composite damages during the pyrolysis resulting in low strength, brittle failure and a very low utilisation of the fibres strain to failure in C/C composites. Inherent fabric parameters such as an increasing fabric density or bundle size or a reduced fibre volume fraction introduce inhomogenities to the CFRP's microstructure. Results are lower strength and stiffness whereas the strain to failure increases or remains unchanged. Toughness is almost not affected. In C/C composites inhomogenities due to a reduced bundle size reduce strain to failure, strength, stiffness and toughness. Vice versa a declining fibre volume fraction leads to exactly the opposite behaviour. Increasing the fabric density (weight per unit area) causes similar effects as in CFRPs.  相似文献   

14.
Fibre and wire reinforced copper alloys as heat sinks for fusion reactors The CuCr1Zr alloy is used in existing experimental fusion reactors and planned to be used as a heat sink in ITER because of his mechanical properties and thermal conductivity (at 20 °C 310–330 W/m/K). Because of aging this dispersion‐hardened alloy is limited in use to temperatures below 450 °C. A possibility to increase the service temperature (the aim is 550 °C) is to reinforce the alloy with SiC‐fibres or W‐wires. With the aid of SiC (SCS‐6) fibres and W‐wires (diameter ~150 μm for both) coated with the CuCr1Zr‐alloy, Cu‐MMCs are produced and their properties (tensile strength, thermal conductivity, fibre/matrix interface properties) are determined. Processing (Hot Isostatic Pressing) causes the alloy to age, making an additional heat treatment necessary in order to optimize the properties. The tensile strength of the different Cu‐MMCs was determined as a function of the volume content of the reinforcements. Tensile strength rises with increasing volume fraction of fibres (or wires) and reaches e.g. 1000 MPa for a SiC‐fibre volume fraction of 24 % or a W‐wire volume fraction of 27 %. Measurements of the thermal conductivity, performed by laser flash, show that the thermal conductivity is reduced with increasing fibre volume fraction (e.g. 200 W/m/K for a fibre volume fraction of 30 %). The W‐wire reinforced CuCr1Zr alloy has been selected because of its better thermal conductivity and interfacial properties to estimate the potential of this Cu‐MMC in a first design study of heat sinks on the basis of different divertor construction types.  相似文献   

15.
Natural-fibre-reinforced polyurethane microfoams   总被引:5,自引:0,他引:5  
Polyurethane-based composites reinforced with woven flax and jute fabrics were prepared with an evenly distributed microvoid foam structure. The relationship between the resin-filled grade and the microvoid content and the density was described. The influence of the type of reinforcing fibre, fibre and microvoid content on the mechanical properties was studied. The investigation results for the static mechanical properties of the composites were described by approximate formulae. It was found that the specific data were only slightly dependent on microvoid content. Increasing the fibre content induces an increase in the shear modulus and impact strength. However, increasing the microvoid content in the matrix results in a decreased shear modulus and impact strength. The woven flax fibre results in composites with better mechanical strength than the woven jute fibre composites.  相似文献   

16.
The properties of glass fibre reinforced cement composites (grc) containing alkali-resistant fibres of lengths 10 to 40 mm and volume fractions 2 to 8% have been studied. At 28 days the optimum properties of the composite were achieved with 6 vol % fibre addition. These were 4 to 5 times the bending strength, 3 to 4 times the tensile strength and 15 to 20 times the impact strength of the unreinforced cement paste. Further increase in the fibre content increases the porosity of the composite resulting in the lowering of bending and tensile strengths. The stress and strain of the composite at matrix cracking increased with increasing fibre contents. No significant improvements in the modulus of the composite were observed over the range of fibre additions investigated. The trends in the properties of grc as affected by the variations in volume fraction and length of the fibre, and environmental conditions of curing of the composites, are qualitatively related to the degree of cement hydration, changes in porosity of the composites and fibre/matrix interfacial effects. The properties of grc change with time, (strengths tend to decrease) and long term studies are in progress.  相似文献   

17.
The short tungsten fibre reinforced Zr41.2Ti13.8Ni10.0Cu12.5Be22.5 bulk metallic glass composites with macroscopic isotropic mechanical properties were prepared by infiltration and rapid solidification. The diameters of the tungsten fibres are 300, 500 and 700?µm with a length of 1000?µm and the fibre volume fraction in three kinds of composites is between 60 and 65%. The room temperature compressive deformation behaviours of these composites were investigated systematically. The results show that the strength and plasticity of the composites increase with the decrease in the tungsten fibre diameter. The maximum compressive strength and plastic strain of the composite with 300?µm fibre, respectively, reach 3079?MPa and 37%. The fracture modes of all the composites are shear fracture. The superior compressive property of the composites with short tungsten fibre is due to the competition among different fracture modes and the inhibition effect of the interface on the shear band extension.  相似文献   

18.
Jute fibres (Corchorus olitorious), an environmentally and ecologically friendly product, were chemically modified and treated with 5% NaOH solution at room temperature for 2 h, 4 h and 8 h. The above samples were characterized and morphologically analysed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Instron 1185. Alkali treatment affects the supramolecular structure of the fibre as shown by XRD by improving the degree of crystallinity of the fibre. Surface chemistry of the fibre also altered as depicted by FT-IR studies. This chemical treatment was also found to alter the characteristic of the fibre surface topography as seen by the SEM. From the mechanical single fibre test it was found that the tenacity and modulus of the fibre improved after alkali treatment. This might be due to the improvement in the crystallinity. DSC data demonstrated that the thermal degradation temperature for the cellulose get lowered from 365·26°C to 360·62°C after alkali treatment led to the reduction in fibre thermal stability. Jute fibre reinforced composite were prepared with treated and untreated jute fibre (15 wt%) reinforced unsaturated polyester (UPE). Effectiveness of these composites was experimentally investigated through the study of the composites by DSC, Instron 1195 for mechanical property of composites, volume fraction of the porosity and hydrophobic finishing of the composite. From the DSC analysis it was found that thermal stability enhanced for treated fibre reinforced composite. This could be due to the resistance offered by the closely packed cellulose chain in combination with the resin. Flexural strength of the composite prepared with 2 h and 4 h alkali treated fibre were found to increase by 3·16% and 9·5%, respectively. Although 8 h treated fibre exhibited maximum strength properties, but the composite prepared with them showed lower strength value. Alkali treatment helped in the development of hydrophobicity and reduction in volume fraction of the porosity. This may be due to the better fibre matrix interface adhesion caused due to the fibre surface treatment by alkali.  相似文献   

19.
Geopolymer matrix composites reinforced with different volume fractions of short carbon fibres (Cf/geopolymer composites) were prepared and the mechanical properties, fracture behaviour and microstructure of as-prepared composites were studied and correlated with fibre content. The results show that short carbon fibres have a great strengthening and toughening effect at low volume percentages of fibres (3·5 and 4·5 vol.%). With the increase of fibre content, the strengthening and toughening effect of short carbon fibres reduce, possibly due to fibre damage, formation of high shear stresses at intersect between fibres and strong interface cohesion of fibre/matrix under higher forming pressure. The property improvements are primarily based on the network structure of short carbon fibre preform and the predominant strengthening and toughening mechanisms are attributed to the apparent fibre bridging and pulling-out effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号