首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
相对于体介质阻挡放电(VDBD),沿面介质阻挡放电(SDBD)等离子体可以更高效地生成反应活性物质,在气体处理方面显示了较高的效率。但沿面放电仅沿介质表面发展,限制了放电等离子体装置处理气体的能力。文中设计了一种新型的沿面/体复合DBD装置,通过在垂直于沿面放电高压电极的上部增加体放电电极,用于扩展等离子体的空间分布并提高活性物质的产量,研究了电极构型、放电气隙、放电电压及气体体积流量等对装置的放电特性及臭氧生成的影响。在空气间隙为4.5mm,外加电压幅值为16kV时,SDBD放电功率为11.2W,VDBD放电功率为4.6 W,复合装置的放电功率为19.7 W;分别测量复合装置中的沿面放电和体放电功率发现,复合装置的沿面放电功较单一沿面放电装置的放电功率提高了1.1倍,而复合装置的体放电功率较单一体放电功率提高了1.9倍。臭氧测试结果表明,复合装置生成的臭氧质量浓度可达3.0 mg/L,分别是SDBD和VDBD的3.8倍和5.0倍。  相似文献   

2.
姜慧  邵涛  车学科  章程  李文峰  严萍 《高电压技术》2012,38(7):1704-1710
在大气环境条件下,以环氧为介质阻挡材料,基于单极性ns脉冲电源进行了表面介质阻挡放电实验,研究了电压幅值、电极宽度、电极间距和重复频率对放电等离子体的影响。结果表明ns脉冲表面介质阻挡放电是丝状放电,放电发生在电压脉冲的上升沿阶段;放电电流主要包括两部分脉冲,与放电丝分布的均匀性有着一定的内在关系,外加电压对放电的均匀性以及产生等离子体的长度起作用;电极宽度和间距对放电电流和产生等离子体的发光强度影响不大,电极宽度和间距越小,放电丝分布越均匀,电极宽度存在一个最优值,使得激励器的放电稳定且产生等离子体相对均匀;脉冲重复频率仅对等离子体强度起作用,对放电特性的影响较复杂,不同电极参数下这些影响与放电丝的分布状态有关。  相似文献   

3.
高频交流激励表面介质阻挡放电特性及其应用   总被引:1,自引:0,他引:1  
高频交流电激励表面介质阻挡放电在控制流动分离方面有重要应用,电压幅值与频率是关键的因素。为此,通过改变电压幅值及频率,获得了电流、电压波形,以及放电图像。并将研究表面介质阻挡放电特性激励器应用于S1223翼型,在风洞中进行了流动控制实验。实验表明:随电压幅值的增大,电流幅值及每mm激励器消耗功率增大,放电宽度以及放电亮度增加;频率改变几乎不影响暴露电极向植入电极一侧放电,频率增大却可以降低双侧放电强度;通过在翼型表面布置表面介质阻挡放电激励器,可以达到抑制翼型流动分离,提高翼型升力系数的效果;翼型攻角在0°~4°与10°~25°下等离子体对翼型升力系数均能起到增效作用,而且表面介质阻挡放电对流动分离的控制效果与电压幅值有关,该文实验条件下7 kV时对翼型升力系数的增效最大,可达61.8%。  相似文献   

4.
相比传统流动控制技术,表面介质阻挡放电(SDBD)具有响应速度快、体积较小、控制位置灵活、成本较低等优势,具有巨大的应用前景。本文在不同电压幅值和不同频率的条件下,分别进行SDBD实验,并利用纹影技术对SDBD诱导气流进行系统的比较分析。利用像素强度积分法拟合了SDBD诱导气流的速度分布,定性分析电压幅值和电源频率对诱导气流速度的影响。实验结果表明,SDBD消耗功率与电压幅值近似呈指数关系,而与频率近似呈线性关系;随着电压幅值和频率的增大,SDBD诱导气流的长度均先增加后趋于稳定;诱导气流纵向速度分布呈先上升后下降至零的趋势,其最大速度随着电压幅值和频率的增大而增大;不同电压幅值、频率下,诱导气流速度曲线均在距介质表面0.2mm附近达到最大值,几乎不随电压幅值和频率的变化而改变。  相似文献   

5.
低温等离子体富含高活性荷能、荷电粒子和自由基,并伴随着较强的短脉冲自生电场,在降解VOCs领域表现出很大的优势,且等离子体废气处理装置具有设备投资小、工艺简单、处理速度快、降解效率高等优点。文中基于介质阻挡放电原理,设计了一种循环水电极柱状阵列式等离子体反应器,搭建等离子体特性实验平台,研究不同电压幅值及不同放电单元数目下DBD的光、电特性,包括电压与电流波形、谐波情况、放电功率、放电图像、发射光谱等。研究发现:随着电压幅值的增大,电流脉冲数量明显增加,偶次谐波含量逐渐减弱至消失,放电更加均匀,特征谱线相对强度和氮分子振动温度均随之增大;且放电功率随电压的增大和放电单元数目的增多而增加,无功功率呈现负值。研究结果为优化等离子体反应器运行参数、提高实际大通量VOCs处理效果提供参考。  相似文献   

6.
表面介质阻挡放电(DBD)在气体流动控制方面有着巨大的应用前景。利用自制的纳秒和微秒脉冲电源进行表面DBD实验,比较了电压幅值、介质厚度、电极水平间距等对两种激励下表面DBD电特性的影响并进行了分析。实验中两种电源激励的表面介质阻挡放电能量均在mJ量级,上升沿瞬时最大功率达到几十kW。实验结果表明:在脉冲上升沿有多次放电,微秒脉冲上升沿放电次数比纳秒脉冲多;随着电压幅值上升,放电次数减少;介质越薄,放电越激烈,能量越大;电极水平间距对表面DBD放电有影响,间距0 mm时能量消耗最大;施加脉冲电压频率越大,放电等离子体的亮度越大;微秒脉冲放电的等离子体区域要大于纳秒脉冲放电。  相似文献   

7.
李雪林  刘峰  方志 《高压电器》2019,55(9):150-156
针对传统介质阻挡放电(DBD)和共面(CDBD)处理三维或不规则材料的不足,文中设计一种由小型微秒脉冲电源驱动的三维CDBD处理装置,在箱体内部由多个单面CDBD反应器组合形成空间环绕式等离子体。通过光学和电学诊断手段测量了装置的放电功率、发光图像以及发射光谱等,研究了电源工作参数对放电均匀性、产生活性粒子强度以及能量效率的影响。结果表明,随着电源电压的升高,放电区域变大,放电均匀性增强,当电压达到11 kV时能够激励整个放电区域,形成较均匀的等离子体。相同电压下,活性粒子强度随频率升高而提高,在5 kHz工作频率下产生的活性粒子强度最强,能量效率随工作频率升高有所下降,工作频率为1 kHz时能量效率最高为40.1%。通过对木块进行表面亲水改性,来验证装置的三维材料处理效果。结果表明,处理后木块各个表面的亲水性均得到增强,处理1 min后,达到稳态时的表面水接触角由30°下降至10°,并且由初始值下降至30°以下的液滴静置时间减少了70%以上。  相似文献   

8.
针对目前国内外对沿面型介质阻挡放电及其应用的研究多集中于体积力和诱导气流的速度上,而对其应用条件下的放电特性研究不足,在空气流速0~20m/s范围内研究了气流对不同激励电压沿面型介质阻挡放电的影响,讨论了气流对放电影响的机制。通过对放电电流和放电电压的测量,分析了气流对最大放电电流、放电功率的影响;通过采集不同来流速度下的放电图像,分析了放电强度、放电均匀性及放电形态。在此基础上综合分析了气流中SDBD的物理规律,结果表明随气流速度的增大,等离子体放电强度减弱,放电变得均匀,最大放电电流和功率都逐渐减小。该研究结果对提高沿面型介质阻挡放电等离子体激励器放电强度及其流动控制能力具有一定的参考作用。  相似文献   

9.
大气压空气中介质阻挡均匀放电产生的等离子体在工业领域具有广阔的应用前景。为研究这种放电的产生条件及机理,利用微间隙介质阻挡放电装置,通过测量放电参数和发射光谱,研究了放电模式的转化过程。结果表明:低电压时电流波形每半个周期存在若干个脉冲宽度很小的脉冲,为微放电丝模式;随着电压增加,电流每半个周期出现了一个宽度较大(约5.5μs)强度较强的脉冲,该较宽电流脉冲上随机叠加了宽度小(约100 ns)强度弱的小脉冲;外加电压峰值达到9.2 kV时,电流波形只存在该较宽放电脉冲,为均匀放电模式。放电发射光谱的研究表明:外加电压增加时谱线强度比降低,即高能电子比例减小。这说明随外加电压增加,微气隙中的放电电场强度是降低的。  相似文献   

10.
为了深入理解沿面介质阻挡放电(SDBD)的放电机理,揭示其产生等离子体的特性参数的演化规律,基于放电的物理过程和实验结果,以非对称结构SDBD发生器为研究对象,建立了其集总参数等效电路模型。首先参照高速相机拍摄的放电图像,估测了等离子体几何尺寸与电压幅值的关系曲线,借助Matlab/Simulink软件,联立Boltzmann方程求解器,求解基尔霍夫电压方程、电子连续性方程,得到电流、电子数密度、电子温度、等离子体电阻、气隙电压、介质表面电压等等离子体特性参数随时间的变化关系,并进一步计算了电子数密度、电子温度、电阻、容抗随电流密度的变化规律。结果表明:随着电流密度的增加,电子数密度和电子温度增大,等离子体电阻和容抗则非线性减小。研究结果可供深入分析激励器放电特性、实现阻抗匹配、提高等离子体发生器效率参考。  相似文献   

11.
为了研究介质阻挡放电中各种影响因素对电子激发温度的影响规律,建立了介质阻挡放电实验系统;利用建立的实验系统测量了介质阻挡放电的发射光谱,推导出电子激发温度与发射光谱的相互关系公式,进而计算出介质阻挡放电时的电子激发温度;通过改变实验条件测量了不同工况下介质阻挡放电的发射光谱,得出放电中的电子激发温度随驱动电压幅值、气体流量以及氩气含量的变化规律。计算结果表明:介质阻挡放电等离子体中的电子激发温度随驱动电压幅值、氩气体积分数的增大而提高,随气体流量的增加而降低。  相似文献   

12.
《高压电器》2016,(8):96-100
表面介质阻挡放电因能产生大面积均匀等离子体而被广泛研究及应用。然而多数研究致力于通过改变反应器对放电产生的等离子体参数进行优化。文中重点研究了介质表面粗糙度对沿面介质阻挡放电特性的影响,从介质表面态角度对产生的等离子体进行优化。石英玻璃作为阻挡介质在实验前经均匀机械研磨,并测量处理后的介质表面粗糙度指标Ra。实验结果发现:当放电产生的低温等离子体均匀分布于放电气隙时,表面粗糙度指标Ra为427.1 nm的介质的起始放电电压最低、平均放电功率最大、放电产生等离子体的电子激发温度最高。介质表面经不同程度研磨处理,能够有效改变表面介质阻挡放电产生的等离子体参数。在所制备的样品中,粗糙度指标Ra为427.1 nm的介质产生的等离子体参数相对更优。  相似文献   

13.
壁电荷对介质阻挡放电特性的影响   总被引:1,自引:3,他引:1  
为了研究壁电荷对介质阻挡放电特性的影响,实验测量了不同驱动电压幅值、气体间隙距离和介质板厚度下的介质阻挡放电的电压-电流特性,并运用气体放电理论和简化的理论模型对实验结果和介质阻挡放电的发展过程进行了分析。结果表明,由于壁电荷的作用使得DBD放电发生的时刻在驱动电压正负半周期不对称,相邻两次放电间隔长短交替;随着驱动电压幅值的增加,介质板厚度或气体间隙距离的减小,DBD微放电增多,传输电荷量增多,介质表面累积电荷量增多,壁电荷对介质阻挡放电的影响增大;当壁电荷足够多时,甚至会出现反向放电。  相似文献   

14.
风力发电机和飞机在低温潮湿环境下运行时存在表面覆冰问题,进而影响装备的正常工作,严重时甚至危害人身财产安全。已有文献发现两电极沿面介质阻挡放电(surface dielectric barrier discharge,SDBD)在除冰方面有潜在的应用前景,但仍存在温升小和效率低等问题。为有效提高SDBD表面温度和除冰效率,该文将一接地电极安装在高压电极同侧,构成三电极SDBD结构,研究三电极脉冲SDBD等离子体特性及除冰过程与效果。结果表明:在相同的放电条件下,与两电极脉冲SDBD相比,三电极脉冲SDBD在放电能量、表面温度、发射光谱强度和除冰效果等方面表现出更为优异的能力。在20kV脉冲电压作用下,13mm间隙的三电极SDBD比两电极SDBD的放电能量增加了约1.95倍,最高温度提高了8℃。数值模拟结果也进一步表明:通过脉冲快速加热,三电极SDBD温升范围广和热量空间分布均匀,在除冰方面有很大的潜力。研究结果可为脉冲放电等离子体除冰及相关应用提供参考。  相似文献   

15.
大气压氩等离子体射流特性   总被引:2,自引:0,他引:2  
为了在大气压下获得均匀、稳定且具有较大体积的氩气介质阻挡放电等离子体射流,提出了一种新的同轴型具有螺纹型内电极结构的等离子体发生器结构设计,在大气压开放环境下获得了均匀稳定的类辉光氩气介质阻挡放电等离子体射流。实验和初步的零维数值模拟结果表明:在所研究的工作参数范围内,放电随外加电压的增加可工作于初始放电阶段、过渡阶段、稳定放电和不稳定放电阶段;在稳定放电模式下,均匀弥散的类辉光放电可充满内径为8.9mm的玻璃管,发射光谱测量结果表明在等离子体射流区含有多种化学活性粒子;数值计算和实验测量所估算的等离子体射流长度基本一致(可为30mm以上),且等离子体射流发射光谱强度的轴向分布与其中亚稳态粒子的退激发过程相关。  相似文献   

16.
沿面介质阻挡放电(SDBD)等离子体能够高效生成反应活性物质,在生物医学、环保等应用领域得到广泛研究。SDBD装置的结构和供电电源参数是影响其放电特性及反应活性物质生成的主要因素,为此,以具有螺环线形高压电极的管状沿面放电装置为对象,研究了装置结构及供电电源对其放电特性及臭氧生成的影响。结果表明:在相同的供电电压下,螺环线形高压电极的螺距、介质厚度影响电极间的电场强度和分布、放电功率和臭氧生成量,但螺环线形高压电极的线径对放电功率和臭氧生成量几乎没有影响;螺环线形高压电极的螺距存在一个优化值,在螺距低于25mm时,放电功率和臭氧产生量随着螺距的增加而增加,当螺距大于25mm时,放电功率和臭氧产生量基本不再变化;当绝缘介质管厚度由3mm减小到1.6mm时,放电功率提高约2倍,臭氧产生量提高约3倍。同采用50Hz交流电源供电相比,SDBD装置采用9.6k Hz高频电源供电时,在较低的电压下即可获得较大的放电功率及臭氧产量,且臭氧生成的能量效率提高约25%。  相似文献   

17.
目前,等离子体激励电源通常以工频交流电作为供电输入,并且体积较大,与便携式等离子体发生装置不匹配,限制了等离子体技术的应用与推广。以此为研究背景,开展了便携式介质阻挡放电电源的设计与研究。该电源重量为200 g,体积为102 mm×57 mm×30 mm。电源主电路采用ZVS双管自激电路。通过电路仿真软件辅助设计主电路,并进行了实验测试。结果表明,当电源输入电压为3 ~12 V时,输出电压可达2 ~ 5 kV、输出频率可在20 ~ 30 kHz范围内变化,最大输出功率为60 W,功率重量比为300 W/kg,高于目前商品化高频高压等离子体电源。采用设计的电源能够成功激发沿面型介质阻挡放电(SDBD)等离子体发生器和悬浮电极介质阻挡放电(FE-DBD)柔性等离子体发生器产生冷等离子体,并对相关特性进行了实验研究,满足了大气压开放条件下空气介质阻挡放电工作电压2 ~ 20 kV、工作频率50 Hz ~ 1 MHz的要求,为介质阻挡放电电源的便携性提供了良好的技术支撑。  相似文献   

18.
空气中纳秒脉冲均匀介质阻挡放电研究   总被引:3,自引:0,他引:3  
邵涛  章程  于洋  方志  徐蓉  严萍 《高电压技术》2012,38(5):1045-1050
大气压空气中均匀介质阻挡放电具有广泛的应用前景,实现均匀放电是介质阻挡放电应用关键之一,因而利用上升沿40ns,脉宽70ns的重复频率纳秒脉冲电源激励在大气压空气中产生介质阻挡放电,介绍了纳秒脉冲均匀介质阻挡放电的电特性和放电图像及放电发射光谱,获得了2ns曝光时间的高速摄影放电图像。发现空气中1mm气隙距离下可以实现均匀放电,气隙距离增加至4mm时放电转变为明显的丝状放电,通过观察发射光谱显示等离子体谱线主要是来自400nm以下的氮分子第二正系。结果证实了大气压空气中利用ns脉冲激励可以产生稳定介质阻挡放电,且能实现均匀放电,是典型非平衡态低温等离子体。  相似文献   

19.
表面介质阻挡放电(SDBD)激励器在等离子体主动流动控制中应用广泛,其表面电离波(SIW)传播特性是优化激励器控制效果的重要参数之一。该文分别以聚四氟乙烯(PTFE)和环氧树脂(ER)为介质材料,制作了多地电极阵列结构的表面介质阻挡放电激励器,采用纳秒高压脉冲电源作为激励源,对表面介质阻挡放电中的表面电离波传播特性进行了实验研究。实验结果表明,在脉冲电压的上升沿发生了两次击穿,形成放电通道,分别为初级电离波和次级电离波。在电流曲线上表现为有两个峰值,第一个电流峰值指示初级电离波,第二个电流峰值指示次级电离波。对不同位置处的电流曲线进行积分得到其电荷分布与演化,发现靠近高压电极处的电荷消散的较快,远离高压电极处的电荷消散的较慢,且聚四氟乙烯介质在放电后有明显的电荷残余,而环氧树脂介质电荷残余不明显。此外,研究了外加电压幅值和重复频率对SIW传播特性的影响,结果表明,当保持电压幅值不变(14kV),在100~1 000Hz范围内,脉冲重复频率越高,SIW的电流衰减速率越快,而SIW传播速度变化不大。保持重复频率不变(500Hz),在8~17kV范围内,脉冲电压幅值对SIW的电流衰减速率基本没有影响,但是SIW的传播速度随着脉冲电压幅值的增大而增加。该研究结果有助于SDBD激励器的放电参数优化。  相似文献   

20.
为促进大气压Ar/H2O等离子体射流放电在材料表面改性、等离子体医学及环境工程等方面的应用,研究了大气压Ar/H2O等离子体射流放电模式和放电参量。测量了这种射流在不同外加电压下的电气特性、发光特性及光谱特性,并据此计算得到主要放电参量,如放电功率、传输电荷、电子激发温度、分子振动温度以及转动温度等随外加电压的变化规律。结果表明:随着外加电压的增大,大气压Ar/H2O等离子体射流放电模式可分为电晕放电、介质阻挡放电和射流放电3个阶段,并可通过电压电流波形图和发光图像进行区分。Ar/H2O等离子体射流产生的粒子主要有Ar、OH以及少量的O和N2等。随着外加电压的增大,放电功率、传输电荷及主要粒子(包括OH)的谱线强度都随着外加电压的增大而增大。当外加电压从7 kV增加到9.5 kV时,分子振动温度和转动温度随着外加电压的增大而增大,其变化范围分别为1 000~2 200 K和350~550 K。当外加电压为9.5 kV时,电子激发温度为0.646 eV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号